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Nanostructured porous materials generally, and nanoporous noble metals specifically, have 

received considerable attention due to their superior chemical and physical properties over 

nanoparticles and bulk counterparts. This dissertation work aims to develop well-established 

strategies for the preparation of multifunctional nanostructured porous materials based on the 

combination of inorganic-chemistry, organic-chemistry and electrochemistry. The preparation 

strategies involved one or more of the following processes: sol-gel synthesis, co-electrodeposition, 
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metal ions reduction, electropolymerization and dealloying or chemical etching. The study did not 

stop at the preparation limits but extended to investigate the reaction mechanism behind the 

formation of these multifunctional nanoporous structures in order to determine the different factors 

controlling the nanoporous structures formation. First, gold-silica nanocomposites were prepared 

and used as a building blocks for the fabrication of high surface area gold coral electrodes. Well-

controlled surface area enhancement, film thickness and morphology were achieved. An 

enhancement in the electrode’s surface area up to 57 times relative to the geometric area was 

achieved. A critical sol-gel monomer concentration was also noted at which the deposited silica 

around the gold coral was able to stabilize the gold corals and below which the deposited coral 

structures are not stable. Second, free-standing and transferable strata-like 3D porous polypyrrole 

nanostructures were obtained from chemical etching of the electrodeposited polypyrrole-silica 

nanocomposite films. A new reaction mechanism was developed and a new structural directing 

factor has been discovered for the first time. Finally, silver-rich platinum alloys were prepared and 

dealloyed in acidic medium to produce 3D bicontinuous nanoporous platinum nanorods and films 

with a nanoporous gold-like structure. The 3D-BC-NP-Pt displayed high surface area, typical 

electrochemical sensing properties in an aqueous medium, and exceptional electrochemical 

sensing capability in a complex biofouling environment containing fibrinogen. The 3D-BC-NP-Pt 

displayed high catalytic activity toward the methanol electro-oxidation that is 30 times higher that 

of planar platinum and high volumetric capacitance of 400 F/cm3. These findings will pave the 
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way toward the development of high performance and reliable electrodes for catalysis, sensing, 

high power outputs fuel cells, battery-like supercapacitors and miniaturized device applications. 
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1.1 Introduction   

This dissertation work aims to develop well-established strategies for the preparation of 

multifunctional nanostructured porous materials based on the combination of inorganic-chemistry, 

organic-chemistry and electrochemistry. The preparation strategies involved one or more of the 

following processes: sol-gel synthesis, co-electrodeposition, metal ions reduction, 

electropolymerization and dealloying or chemical etching. The study did not stop at the preparation 

limits but extended to investigate the reaction mechanism behind the formation of these 

multifunctional nanoporous structures in order to determine the different factors controlling the 

nanoporous structures formation. New parameters that control the formation mechanism of these 

nanoporous materials were discovered and discussed in details for the first time. Electroanalytical 

chemistry and electrocatalysis came in the heart of this work to study the potential applications of 

the prepared nanoporous materials. This chapter begins with an overview of the noble metal-based 

porous materials, their properties, fabrication methods and applications. The electroassisted 

chemical synthesis of metal, sol-gel and polymer structures will be addressed in the second part of 

this chapter. 

1.2 Overview of the Noble Metal-Based Porous Materials 

Nanomaterials generally, and nanostructured porous metals specifically, have fascinated 

scientists due to their exotic and promising properties and applications in sensing, catalysis and 

energy devices.1, 2 The term nanoporous is widely used to refer to porous materials with pore size 

within the nanometer regime. The IUPAC classified porous materials into three main categories 

http://en.wikipedia.org/wiki/IUPAC
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microporous, mesoporous and macroporous with pore size in the orders of 0.2–2 nm, 2–50 nm and 

50–1000 nm, respectively.3 Nanostructured porous noble metals (NPNMs) have received a 

considerable attention due to their superior chemical and physical properties over nanoparticles 

and bulk counterparts. Nanoporous metals possess an interesting combination of properties owing 

to their metallic nature and the nanoscale features or the so-called “finite-size effect”.4, 5 These 

intriguing properties are of particular interest from the fundamental research and technological 

applications points of view. Among the different types of porous materials, NPNMs (e.g. Au, Pd 

and Pt) have fascinated scientists due to their nobility, biocompatibility (e.g. Pt and Au), tunable 

pore structure, high surface-to-volume ratio, unique optical properties (e.g. Au), excellent 

electrical and thermal conductivities, good mechanical stability, low density, high catalytic activity 

(e.g. Pd and Pt), ease of functionalization and large surface area, which has placed them in the 

forefront as potential candidates for a wide range of technological applications including sensing, 

catalysis, drug delivery, and energy storage.1, 2, 6-8 For example, bulk gold is chemically inert, while 

nanostructured porous gold (NPG) displays an extraordinary catalytic activity for a variety of 

heterogeneous catalytic and electrocatalytic reactions due to its high surface area, facile recovery, 

large number of active sites and the enhanced mass transport through the porous structure.2, 9 NPG 

has been found to act as an excellent catalyst for selective oxidation of alcohols (e.g. methanol),10 

low-temperature CO oxidation,11, 12 glucose oxidation,13, 14 oxidation of formic acid,15, 16 and many 

other reactions.17, 18 Nanoporous palladium and platinum are excellent catalysts in alcohol-based 

fuel cells.19-22 Nanostructured porous noble metal (NPNM) electrodes are characterized by much 
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higher electrochemically active surface area, slower mass transport and higher electron transfer 

rate through the porous metallic network with respect to traditional flat metal electrodes and metal-

nanoparticles-based electrodes.23 As a result, the introduction of these electrodes into the field of 

analytical chemistry is advantageous in terms of improving the sensitivity and lowering the 

detection limits of sensing devices, which would hold promise for device miniaturization.23-25 

Another merit offered by NPNM electrodes is their biocompatibility (e.g. Pt and Au) and rich 

surface chemistry (e.g. Au), which leads to ease of surface functionalization and biological 

molecules (e.g. enzymes, antibodies or proteins) immobilization. These characteristics could make 

nanostructured porous metal electrodes ideal substrates for biosensing applications.26-28 For 

example, NPG electrodes have been successfully used in the detection of DNA,29, 30 dopamine,31 

L-cysteine,32 hydrazine, and nitrite.33   

1.3 Fabrication Strategies of Nanostructured Porous Noble Metals  

Porous materials like soil, sponges, biological tissues and zeolites are present in nature but 

nanoporous metals mainly come from synthetic routes. The fabrication of nanoporous metals is 

challenging due to surface energy constraints.1 However, significant efforts have been devoted 

toward the fabrication of nanoporous metals motivated by their potential applications in catalysis, 

energy and sensing sectors. A number of approaches have been developed to fabricate 2D (e.g. 

thin films) and 3D (e.g. metal foams, metal aerogels and three dimensional bicontinuous porous 

metal structures) porous metals such as lyotropic liquid crystals soft template technique,34 hard 

templating of mesoporous silica, porous alumina or carbon,23, 34 dynamic templating by the use of 
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the hydrogen bubbles,35 sputtering,36, 37 combustion synthesis,5 sol-gel assembly of prefabricated 

metals nanoparticles,38, 39 electrochemical sol-gel methodology,40, 41 dealloying techniques,42, 43 

and electrochemical deposition.44, 45 

Based on the applied synthesis strategy two types of nanoporous noble metal structures can 

be produced, ordered and non-ordered structures. The combination of more than one preparation 

strategy can produce nanoporous noble metal structures with hierarchical pore organization. 

Hierarchical porous structures may contain ordered or non-ordered pores or a combination of both. 

They are often made up of an ordered large pore structure with the ligaments connecting the large 

pores consisting of ordered/non-ordered pores. In the following sections, I will discuss the 

application of the templating techniques to prepare ordered porous noble metal structures, sol-gel 

assembly and combustion methods to prepare non-ordered porous noble metal structures and the 

dealloying approach to fabricate 3D bicontinuous noble metal nanoporous structures. 

1.3.1 Template Approach  

Templating techniques are well-known as straightforward and effective strategies to 

fabricate porous metals with ordered structure since the 1990s.34, 46 The popularity of templating 

techniques arise from their simplicity and ability to fine-tune the pores size and shape. Hierarchical 

porosity is feasible through the application of templates of various sizes/types.25 The pore size of 

the produced porous metal can range from micrometer to macrometer scale based on size of the 

pores in the mother template. Generally, there are two main kinds of templates that can be used as 

scarifying molds for noble metals nanocasting; hard and soft templates.34  



www.manaraa.com

6 

 

1.3.2 Hard Templates 

In comparison with other preparation techniques, the hard templating strategy is considered 

the most widely used methodology for preparing ordered porous nanostructures.47  The history of 

applying the hard template technique in preparing ordered porous structures is new and dates back 

to late 1990s when a variety of porous carbon materials were prepared using a sacrificial porous 

mold.46, 48-50 Although there are many types of templates that can be used to produce long-range 

ordered porous metal structures such as assembled colloidal crystals (e.g. array of silica or 

polystyrene spheres), anodic aluminum oxide (AAO), and others.34, 51, 52  

Typically, the fabrication of ordered porous metal nanostructures using the hard template 

technique involves three main steps as shown in Figure 1.1:34 a) preparing or choosing a template 

with a desirable ordered pore structure and size, and uniformly filling the ordered template 

pores/void spaces with the target precursors solution (e.g. impregnation of the template in metal 

ions solution), b) casting the target precursors (e.g. dissolved metal ions) by converting it into a 

solid phase through chemical or electrochemical reduction/deposition process to produce template-

target material composite, and c) generation of the ordered metal porous structure via the template 

removal. The resulting porous structure is a negative metal replica or inverse structure of the 

original template. There are two main criteria that should be considered in choosing a template: a) 

stability of the template during the impregnation and metal deposition processes, and b) how easy 

it can be removed without disturbing/damaging the deposited metal replica. 
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Figure 1.1. Fabrication of ordered nanostructured porous metals using the hard template 

approach. Adapted with permission from reference 34. Copyright 2008 John Wiley and Sons, Inc. 

Variety of noble metal nanostructures including nanotubes, nanowires, nanoparticles, 

nanoworms, 2D and 3D ordered porous structures have been prepared by the application of the 

hard templating technique.34, 47 For example, in 2002 Bartlett et al. electrodeposited gold and 

platinum within the voids of colloidal crystals made up of polystyrene latex spheres. Upon 

treatment of the composite metal-polystyrene films with toluene, the polystyrene latex spheres 

composing the colloidal crystal hard template dissolved to produce high surface area noble metal 

structures with highly ordered macroporous three-dimensional frameworks.53 Collinson and co-

workers employed the electrochemical reduction of gold ions within void spaces of colloidal 

crystal latex templates to fabricated porous gold films with 3D network structures.25, 51 Long 

ordered porous gold structures with uniform pores size distribution were obtained by applying 

latex spheres of one size while applying latex spheres of two different sizes resulted in the 
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formation of hierarchical porous gold structures.25, 51 Silica colloidal crystals have been employed 

by Colvin and co-workers to fabricate porous gold films with pore sizes in the macrometer scale.54  

1.3.3 Soft Templates 

The soft templating technique is also known as the direct-templating technique and it 

depends on the utilization of lyotropic liquid crystalline (LLC) phases to develop nanoporous noble 

metal structures.34, 47 The lyotropic liquid crystals (LLCs) are consisting of two components, an 

amphiphile (A) and solvent (B, e.g. water). The component A is an amphiphilic molecule 

composed of an ionic or non-ionic hydrophilic head-group that links covalently to a hydrophobic 

tail (e.g. surfactants and amphiphilic block copolymers). When A dissolves in B a long-ranged 

order periodic structure is obtained with meso- to nanometer scale ranged lattice parameters. The 

microstructure of the evolved LLC mesophase is concentration, solvent, temperature and 

molecular structure dependent. For example, by controlling the composition ratio (A : B) of the 

LLC solution a variety of  LLC structural mesophases can be obtained including spherical micellar, 

inverse micellar, cubic, hexagonal and lamellar.34, 47 The 1992 breakthrough by Mobil Oil 

researchers55, 56 who succeeded in preparing a variety of mesoporous based silica materials (MCM) 

opened the gates for the preparation of many new structural porous materials.     

The soft template approach includes: mixing the LLCs with the desired noble metal ions 

(M) to prepare a stable long-range ordered mesophases, formation of LLCs replica/cast by 

chemical or electrochemical reduction of the confined metal ions in the LLC mesophases, and 

finally the LLCs template removal to produce a mesoporous noble metal structure as depicted in 
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Figure 1.2.34 Preparation of noble metal nanoparticles or nanowires is also possible via controlling 

the composition ratio A : B : M in the deposition bath.  

 

Figure 1.2. Fabrication of ordered nanostructured porous metals using the soft template 

approach. Adapted with permission from reference 34. Copyright 2008 John Wiley and Sons, Inc. 

The first fabrication of mesostructured porous noble metal via the soft templating approach 

was reported by Attard and co-workers in 1997.57, 58 Mesoporous platinum thin films were 

prepared from aqueous-based highly concentrated nonionic surfactants LLCs plating solution via 

electrochemical reduction of the platinum ions confined in the LLCs mesophases.57 Attard’s 

pioneering work provided a new route for the preparation of many mesoporous metals such as Pt, 

Co, Ni and Pt-alloys.57-63 Ryoo and co-workers reported the use of mesopores silica templates (e.g. 

MCM-48) and hydrogen reduction at elevated temperatures to fabricate mesoporous platinum 

structures.64 Platinum nanowires were obtained when SBA-15 and/or MCM-41 mesoporous silica 

templates were applied.  
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1.3.4 Synthesis of Noble Metal Aerogels by the Sol-Gel Assembly Approach  

Noble metal aerogels represent new and unique class of porous materials.65 They are 

characterized by their ultralow densities, very high surface area and presence of non-ordered 

hierarchically porous three-dimensional open network structure consisting of extended and 

interconnect metal nanoparticles.65 The history of aerogel synthesis dates back to 1931 when 

Samuel Kistler succeeded in the preparation of silica aerogel, which is considered the first 

synthesized aerogel.66 Since then, extensive research in the aerogel synthesis resulted in the 

development of many new classes of the aerogel including organic, inorganic, organic-inorganic 

hybrid and carbon aerogels.65 Although the success in the preparation of many inorganic aerogels 

(e.g. metal oxides, metal sulfides and metal-metal oxides nanocomposite) and few metallic 

aerogels (e.g. Fe, Cu and Co) from carbothermally reducible metal oxides, the synthesis of noble 

metal aerogels has become feasible only very recent through the development of the well-known 

sol-gel bottom up synthesis strategy.65  

Figure 1.3 shows the noble metal aerogels synthesis protocol based on sol-gel assembly 

of the noble metal nanoparticles. The synthesis strategy consists of three steps: (a) chemical 

reduction of the metal ions to form metal nanoparticles; (b) assembly/gelation of the nanoparticles 

to form a metal hydrogel. Hydrogel formation is the most critical step during the noble metal 

aerogels synthesis because the microstructure of the final aerogel is a reflection of the hydrogel 

microstructure; and (c) supercritical or freeze drying of the metal hydrogel to produce the metal 

aerogel.65 Steps (a) and (b) can be separated or combined in a one step process called spontaneous 
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gelation.65 Chemical reduction of the noble metal ions aqueous solution is induced by the addition 

of NaBH4 in the presence of trisodium citrate or glutathione as stabilizing agent to produce a stable 

 

Figure 1.3. Fabrication of noble metal aerogels by the the sol-gel assembly approach. 

colloidal sol.67-70 The hydrogel gel is obtained by concentrating the colloidal sol (citrate- or 

thiolate-coated nanoparticles) by a factor of 10-50 using centrifugal filtration (e.g. Sartorius 

Vivaspin centrifuge filters MWCO 30,000) or rotary evaporation techniques. Then, the 

concentrated colloidal solution is converted into hydrogel gel by allowing it to set for several hours 

or by addition of a destabilizing agent such as tetranitromethane (C(NO2)4).
70 To avoid the 

shrinkage and collapse of the hydrogel network structure during the regular drying, a CO2 

supercritical drying was utilized to convert the hydrogel into aerogel. A wide range of mono and 

binary noble metal aerogels were produced by this methods including the mono aerogels of Ag, 

Au, Pt, and Pd plus their binary mixtures aerogel as depicted in Figure 1.4.68 
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Figure 1.4. TEM images of multimetallic Au-Pd, Pt-Pd and Ag-Pd aerogels. 

Adapted with permission from reference 67. Copyright 2014 American Chemical Society.  

1.3.5 Combustion Synthesis of Nanoporous Metal Foams 

A highly porous metal nanostructure with a low relative density (dst/dbulk) and porosity 

higher than 50% that is composed of metal nanoparticles or nanowires assembled/interconnected 

in a 3D fashion called nanoporous metal foam (NMF).5 The high surface area of NMFs originates 

from the presence of a large population of cluttered pores of all sizes (10-200 nm) including 
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micropores, mesopores, and macropores. Although there are different methodologies to prepare 

NMFs such as nanosmelting,71 templating35, 72 and sol-gel assembly techniques,65 here I will 

exclusively focus on the most recent preparation strategy developed in Los Alamos and 

denominated as combustion synthesis or self-propagating high temperature synthesis (SHS).5 The 

combustion synthesis depends on the decomposition of highly energetic metal precursors (e.g. 

nitrogen-rich metal complexes) to produce the metal foam, where the high energy 

generated/obtained from the combustion process drives the metal foam formation reaction to 

completion.5 Los Alamos scientists Tappan, Steiner, and Luther observed that unlike most of the 

nitrogen-rich complexes and salts that display vigorous and fast combustion process or even 

detonate to produce powders, the bistetrazolamine (BTA) metal complexes are characterized by a 

controllable, self-sustained and relatively slow combustion behavior to produce nanofoams.5 

During the combustion of the BTA metal complexes (Figure 1.5), the electron-rich nitrogen 

centers reduce the divalent or trivalent metal ion (M2+ or M3+) into a metal atom (M0) and nitrogen 

gas is evolved. The produced nitrogen gas drives the agglomeration of the metal atoms with each 

other to produce metal nanoparticles, which further agglomerate to produce a 3-diementional 

porous network or the so called nanofoams. A typical example of metal nanofoams synthesized by 

the combustion method is shown in Figure 1.6.5 
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Figure 1.5.  (a) Bistetrazolamine (BTA) ligand and (b) BTA metal complex (M: Fe3+ or Co3+) 

 

Figure 1.6. Co nanofoams prepared by the combustion of cobalt bistetrazolamine complex 

with porosity ranging from nm to mm. Adapted with permission from reference 5. Copyright 2010 

John Wiley and Sons, Inc. 
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1.3.6 Dealloying Approach 

The dealloying approach holds promise as a tool to prepare three dimensional bicontinuous 

porous noble metals nanostructured frameworks. The presence of continuous, non-intersecting and 

oriented plane/surface (e.g. vertical, horizontal, etc.) within a volume furnishes continuously 

interpenetrated sub-volumes. This partition fashion called bicontinuous partitioning. A 3D 

structure composed of a bicontinuously partitioned sub-volumes each of them is filled with a 

distinguished and connected phase of matter (e.g. solid, gas, or liquid) called a 3D bicontinuous 

structure.73 For example, sponge composed of connected solid phase and connected gas phase 

across the sample. Another common example is the field of electrochemical sensing is nanoporous 

gold (NPG). The unique structure of NPG is made up of bicontinuous noble metal nanopores and 

ligaments as can be seen in Figure 1.7.73  

Dealloying, also known as depletion gilding or selective dissolution, is a corrosion process, 

in which the least noble component is selectively removed from an alloy in a corrosive medium 

(e.g. silver in silver-rich gold alloy). The dealloying process will occur only when the alloy 

components (binary, ternary or multicomponent) have an adequate oxidation potential difference. 

The challenge in the formation of 3D bicontinuous porous noble metal structures via the dealloying 

technique is attributed to the fact that dealloying of a given system (e.g. Au─Ag) is only possible 

within a narrow compositional range. Outside this range and at high percentage of the more noble 

metal, the complete dissolution of the less noble alloy component is impossible and random pores 

are obtained.74, 75  While at low concentrations of the more noble metal, formation of microscopic  
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Figure 1.7. SEM micrographs of 3D bicontinuous nanoporous gold on glass at different 

magnifications. SEMs collected by Ahmed A. Farghaly. Fabrication method was developed by 

Ahmed A. Farghaly and Hajira Choudhary. Sample prepared by Christopher J. Freeman. All the 

work done under supervision of Prof. Maryanne M. Collinson. 

cracks or complete destruction of the resulting porous framework is possible. It is worthwhile to 

point out that, this narrow compositional range is mainly governed by the diffusion rates of the 

alloy constituents. After the preferential dissolution of the more active metal (e.g. Ag in Au─Ag), 

either chemically or electrochemically, the atoms of the less active metal (e.g. Au) undergo a series 
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of structural rearrangements to form a porous network.76 By controlling the composition of the 

starting alloy and the dealloying reaction parameters, nanoparticles, nanowires or porous structures 

of a well-defined pores and ligaments size can be obtained.23, 76-78 In this section, the focus will be 

on the dealloying fabrication of 3D bicontinuous nanoporous gold (NPG), the most common 

porous nanostructured noble metal. 

1.3.6.1 Preparation of Gold Alloys 

The most common binary alloy that has been used to fabricate NPG is Au─Ag system.23, 47, 

77, 78 Examples of other alloys that have been used to fabricate NPG are Au─Ni79 and Au─Zn.80 

There are a number of techniques that have been developed to prepare the Au─Ag binary alloy. 

For example, the alloy can be obtained via electrodeposition of Au and Ag from a cyanide-81, 82 or 

thiosulfate-based83 plating solutions through the application of a sufficient negative potential. The 

applied cathodic potential at the working electrode reduces the gold and silver ions at the 

electrode/electrolyte interface and hence metallic Au and Ag are co-electrodeposited on the 

working electrode surface. The composition ratio Au : Ag in the resulting alloy can be fine-tuned 

by controlling the composition of the plating solution and/or magnitude of the applied negative 

potential. Binary alloys of various compositions, shapes and sizes can be obtained by melting 

highly pure Au and Ag metal targets at very high temperatures followed by dicing or rolling.84-86 

The same metal targets can be used to produce Au─Ag alloys of various compositions and 

thicknesses by the application of sputter coating, thermal or electron beam evaporation 
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techniques.87, 88 Binary Au : Ag (~1 :  1) alloy, e.g., 12 Karat white gold leaf,  is commercially 

available at the art stores  from Monarch company and others.23, 89 

1.3.6.2 Mechanism of Porosity Evolution 

In 2001, Erlebacher and co-workers succeeded in developing a kinetic model to explain 

the mechanism of pore formation during the dealloying fabrication of NPG from Au─Ag system.76, 

90 When a homogenous single phase Au─Ag alloy is immersed in a corrosive medium (e.g. HNO3), 

the Ag atoms at the most top surface layer dissolve and the Au atoms diffuse very fast and 

aggregate at the solid/electrolyte interface to form two-dimensional gold clusters and islands. The 

net result will be the formation of a pore and the next underlying Au─Ag layer will be exposed to 

the corrosive medium. As a result, the dealloying process continues, more silver atoms dissolve 

and more gold atoms rearrange to form the 3D bicontinuous nanoporous network.76, 90  

Many scientists utilized the dealloying approach to prepare nanoporous gold structures. 

For example, Erlebacher’s research group and Collinson and co-workers prepared NPG free-

standing films by chemical etching of silver in 12 Karat white gold leaf using HNO3.
89, 91 The 

resulting films are crack-free and can be transferred to any suitable substrate (e.g. GCE, gold or 

glass slides) based on the desired application. Ji et al.82 and Wang and co-workers92, 93 

electrodeposited Au─Ag binary alloy to produce different NPG structures. Ji et al. simultaneously 

electrodeposited Au and Ag in porous anodic alumina substrates (AAO) from cyanide-based 

plating solutions, followed by selective removal of the AAO template and Ag to produce porous 

gold nanowires.82 Wang and co-workers used the sequential electrodeposition in AAO to form 
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Au─Ag alloys of different compositions. Upon silver etching porous gold nanowires of various 

morphologies obtained.92 Wang’s research group also electrodeposited Au-Ag in the voids of 

closely packed polystyrene spheres within a polycarbonate membrane. Selective dissolution of Ag 

and the double template resulted in the formation of hierarchical porous gold microwires.93 

Almost, at the same time but separately, Collinson and co-workers prepared hierarchical 

nanoporous gold electrodes via dissolution of silver in the electrodeposited Au─Ag alloy within 

the interstitial spaces of polystyrene spheres-based colloidal crystal.94     

1.4 Applications of Porous Noble Metals 

The intrinsic properties of NPNMs such as their large surface area, high surface area-to-

volume ratio, excellent electrical conductivity, ease of modification, high stability, high durability, 

tunable porosity, resistance to fouling agents, biocompatibility and superior catalytic activity made 

them ideal platforms for sensing and catalytic applications.1, 5, 47, 65 

1.4.1 Sensing Applications of NPNMs 

In the field of sensing, NPNMs-based electrochemical sensors and biosensors displayed 

high sensitivity, lower detection limits and excellent performance even in complex environments 

such as milk, blood and other biological fluids with respect to their planar counterparts.1, 23, 24, 78 

Furthermore, NPNMs-based sensors are advantageous in studying and detecting electroactive 

species with sluggish electron transfer kinetics.13, 28, 95, 96 It is quite important to emphasize that in 

order to gain these merits, considerable attention must be paid to the sensor design. For example, 

control over the pore diameter needs to be achieved to avoid the mass transport problems, ensure 
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access of the electroactive species being detected into the inner surface of the electrode and to 

prevent the blockage of the electrode surface when it used in complex fouling environments. A 

large number of NPNMs-based sensors have been developed. For example, Hieda et al. 

demonstrated a 40-fold increase in the sensitivity of quartz crystal microbalance-based gas sensors 

when planar gold electrodes were replaced by NPG electrodes.97 Collinson and co-workers 

demonstrated that 3D bicontinuous NPG electrodes made by chemical etching of Ag in nitric acid 

are excellent sensors in complex biological environments that contain biofouling agents such as 

bovine serum albumin and fibrinogen.91 The study showed that bicontinuous NPG electrodes 

displayed well-defined cyclic voltammetric peaks when immersed in blood containing potassium 

ferricyanide while planar gold electrode suffered from biofouling effects. Seker and co-worker, 

further expanded Collinson's approach91 to detect nucleic acids (e.g. DNA) in biofouling 

environments containing bovine serum albumin (BSA) and fetal bovine serum (FBS).98 ssDNA 

probes (26 bp) samples were immobilized on three different types of gold electrodes: planar gold, 

nanoporous gold obtained by dealloying Au-Ag thin film in nitric acid, and dealloyed nanoporous 

gold that underwent annealing before use. The response of the modified gold electrodes toward 

methylene blue (MB), a DNA redox marker, in biofouling environments was monitored by square 

wave voltammetry (SWV). The planar electrodes biofouled and became irresponsive. Both 

nanoporous gold and annealed nanoporous gold displayed a well-fined response with the annealed 

electrode being more sensitive due to the enhanced mass transfer through the larger pores. DNA 

molecules with concentrations between 200 nM down to 10 nM were successfully detected.98 
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Ding et al. used NPG electrodes, gold nanoparticles and differential pulse voltammetry to 

develop a sandwich-like electrochemical immunosensor for the detection of hepatitis B (HBs) with 

a detection limit of 2.3 pg/mL.99 Generally, an immunosensor is an analytical sensor used to detect 

the antigen (Ag) - antibody (Ab) interactions during the Ag-Ab complex formation. Figure 1.8 

depicts the sandwich-like hepatitis B immunosensor. First, a white gold leaf (Au-Ag alloy, 1:1 wt 

%) was immersed in 1: 1 nitric acid solution to selectively remove Ag to produce NPG, which is  

 

Figure 1.8. Schematic illustration of the fabrication of NPG-based immunosensor for 

hepatitis B. Reprinted with permission from reference 93. Copyright 2010 Elsevier. 
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then subsequently loaded on GCEs. Horseradish-peroxidase (HRP) labeled hepatitis B antibody 

(HBsAb) gold nanoparticles bioconjugate (HRP-HBsAb–Au NPs) was obtained by mixing the 

gold nanoparticles with HBsAb at pH ~ 9. The authors utilized the gold-thiol chemistry to 

covalently immobilize the hepatitis B antibodies (HBsAb) on the NPG surface.  Then, the modified 

NPG electrode was immersed in HBsAg solution and HRP-HBsAb–Au NPs was dripped onto it 

to form the sandwich Ag-Ab complex. In order to determine the concertation of HBsAg, the final 

modified NPG electrode was immersed in o-phenylenediamine (OPD) and H2O2 solution where 

the HRP on the NPG electrode surface catalyzed the interaction between OPD and H2O2 to produce 

an electrochemically active species, 2,3-diaminophenazine (DAP), which was measured by means 

of  differential pulse voltammetry.  

Many other types of NPNMs-based sensors have been developed such as DNA sensors,100, 

101 enzyme-based biosensors,102, 103 Raman sensors104, 105 and small molecule sensors.31, 33  

1.4.2 Catalytic Applications of NPNMs 

In this section only the electrocatalytic applications of NPNMs will be discussed. In 

general, NPNMs-based catalysts displayed improved electrocatalytic activity, high stability and 

recyclability compared with their non-porous or nanoparticles-based counterparts.47, 65 Fuel cells 

are highly efficient devices that can directly convert the chemical energy of a fuel (e.g. hydrogen 

or methanol) into electric current through an electrochemical reaction and they represent the most 

important clean energy application of NPNMs-based electrocatalysts. Currently, fuel cells are 

receiving tremendous interested due to the fact that they are clean sources of energy. To date, the 
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most efficient catalysts in fuel cells generally and direct alcohol fuel cells (DAFCs) specifically 

are Pt- and Pd-based materials. Interestingly, in fuel cells a Pt-based catalyst can serve as anode to 

catalyze the oxidation of small molecules (e.g. hydrogen, methanol, ethanol, etc.) or cathode to 

catalyze the oxygen reduction reaction (ORR).19, 21, 22, 106 For example, Liu et al. studied the 

electrocatalytic activity of Pd aerogels and commercial Pd/C(10 wt%) toward the ethanol oxidation 

reaction (EOR) by means of cyclic voltammetry and chronoamperometry.107 They found that Pd 

aerogels displayed faster EOR kinetics, higher stability, and much higher current densities (A/mg) 

in the forward CV scan than the commercial Pd/C catalyst.  

Erlebacher and co-workers108 and Xiao et al.109 demonstrated the electroless deposition of 

a thin layer of platinum and platinum nanoparticles on NPG films, respectively. Erlebacher’s group 

prepared a NPG template by dealloying a white gold leaf (12-carat, Monarch) in concentrated 

nitric acid. The NPG template floated on a 2 mM Na2Pt(OH)6 solution at pH ~10 and a vapor of 

hydrazine was allowed to flow at NPG-platinum ions solution interface. By doing this, they 

succeeded in depositing a highly uniform thin layer (1-5 nm) of platinum within the NPG pores. 

A power density of 4.5 kW/g comparable to that of conventional fuel cells was obtained when the 

Pt-coated-NPG used in fuel cell applications. Xiao et al. followed the same chemical dealloying 

strategy to create NPG. The NPG was allowed to set in contact with a solution containing 0.31 

mM H2PtCl6 as a Pt precursor and 0.13 mM HCOOH as a reducing agent. The net result was 

decoration of the NPG with Pt nanoparticles.  Compared with pristine NPG, which displayed no 
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catalytic activity toward the methanol oxidation reaction (MOR), the Pt (NPs)-coated-NPG 

heterogeneous catalyst demonstrated excellent catalytic activity and high tolerance in the MOR.109 

The application of NPNMs-based catalysts as cathode materials in the polymer electrolyte 

membrane fuel cell (PEMFC) to catalyze the ORR is of growing interest.47, 65 Many NPNMs-based 

catalysts displayed higher catalytic activity toward the ORR than the state-of-the-art Pt/C (3 nm Pt 

NPs support in C). For example, Liu et al. studied the electrocatalytic activity of Pt-Pd aerogels 

toward the ORR.110 They found that Pt-Pd aerogels are superior catalysts toward the ORR 

compared with the commercial Pt/C (20 wt%) catalyst. Among the different studied Pt-Pd aerogel 

compositions, Pt80-Pd20 aerogel displayed the highest catalytic activity toward the ORR, 5 times 

greater than that of the Pt/C (20 wt%) and exceeds the United States DOE 2017 target111 for the 

ORR fuel cell catalysts (0.44 A/ mg Pt). In addition, there are many reports of the use of 

nanoporous platinum based materials especially Pt-Ni as active catalysts in ORR reactions.112, 113 

1.5 Nanostructured Materials by Electrodeposition 

Recently, electrodeposition has received considerable attention as a versatile technique to 

fabricate nanostructured materials. Electrodeposition is a low temperature (in most cases), simple, 

cost- and time-effective technique that doesn’t involve intensive instrumentation for the 

preparation of metals, bi or multicomponent metal alloys of different configurations and 

compositions. Electrodeposition enables the formation of nanostructures in complex environments 

and shapes that are not accessible by conventional nanomaterials preparation methods. A basic 

requirement for any electrodeposition reaction to occur is the presence of a conductive substrate. 
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Noble metal nanoparticles, wires, tubes, and even complex structures (e.g. hierarchical, coral-like, 

layered, foams etc.) of different sizes and morphologies can be prepared either as thin films or as 

free-standing entities by the electrochemical reduction of the corresponding metal ions or 

complexes.114, 115 High degree of control over the thickness and morphology of the 

electrodeposited films can be achieved by manipulating/controlling the electrodeposition reaction 

parameters, such as the magnitude of the applied deposition potential, composition of the 

electroplating solution, reaction time and temperature.114, 115 In the field of the nanoscale materials 

synthesis, electrodeposition techniques possess an important advantage that is not offered by most 

of the conventional nanomaterials preparation strategies, which is the outstanding degree of 

reproducibility.114, 116-119 

1.5.1 Nucleation and Growth 

The nanoscale features and microstructure of an electrodeposited material is dependent of 

the nucleation and growth modes.114, 115 Electrodeposition of nanocrystalline materials, materials 

composed of nanocrystals, is possible by controlling the electrodeposition reaction parameters 

especially in low exchange current density systems where rate of the electron transfer between the 

electroactive species and the electrode is slow. The first stage during the electrodeposition process 

involves the formation of nucleation sites on the conductive substrate surface. The number of 

nuclei (first crystals) formed at the beginning of the electrodeposition reaction is a function of the 

applied potential and concentration of the deposited material precursors and they are correlated 

with a Nernst-type relationship.120 The nucleation process is governed by the following relation:121 
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(1.1) 

(1.2) 

 

where N represents the density of the surface nuclei formed, No is a constant related to the 

saturation value, t is the deposition time, and R is the nucleation rate and it given by the following 

equation:122 

 

where  is the electrodeposition reaction overpotential value and A and B  are overpotential–

independent constants. It is important to point out that the nucleation process starts only on the 

active nucleation sties, which their number is potential and concentration dependent as pointed out 

earlier and not on the entire electrode surface. Homogeneous distribution of the nucleation centers 

is possible at large R values. Based on the nature of the interaction between the atoms or molecules 

of the electrodeposited material and the conductive substrate surface, three different types of 

growth modes can be distinguished as shown in Figure 1.9.123 In other words, the magnitude of 

the binding energy between atoms or molecules of the electrodeposited material and substrate 

lattice is governing the growth mechanism. Figure 1.9 (a) displays the direct formation/nucleation 

of three dimensional clusters on surface of a conductive substrate that grows into 3D islands 

according to the Volmer–Weber island growth mode. An electrodeposited film will grow 

according to the island growth model when lattice misfit is absent and the binding energy between 

the deposited atoms or adatoms and each other is higher than that between the deposited atoms 

and the substrate surface.114 The opposite situation is also possible when the deposited metal atoms 
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bind stronger to the substrate than to each other leading to the formation of two-dimensional 

structures, where a complete monolayer of the deposited metal atoms must be formed first before 

the next layer begins to grow as depicted in Figure 1.9 (b).114 This layer-by-layer growth mode 

called Frank–van der Merve growth mode and is characterized by a lattice misfit between the metal 

adtoms and substrate lattice. An intermediate layer-plus-island growth mode also exist and called 

Stranski-Krastanov growth mode. This growth mechanism starts with the formation of a high free 

energy two-dimensional layer followed by the growth of three-dimensional islands on its surface 

as shown in Figure 1.9 (c). The switch between the layers and islands growth modes could be 

attributed to the change in energetics, which mainly arises from the orientation and/or symmetry 

of the adatoms in the in intermediate layer.114 This energy change hinders the growth of the 

intermediate layer into a bulk crystal and favors the islands formation.114, 123   

 

Figure 1.9. Schematic illustration of the different modes of thin film growth (a) 3D islands 

(Volmer - Weber mode), (b) 2D layer-by-layer (Frank-van der Merve mode), and (c) 2D layer + 

3D islands (Stranski-Krastanov mode). Modified from reference 116. 
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Stranski-Krastanov (layer-plus-island) and Volmer-Weber (island) modes are the most 

common growth modes during the electrodeposition of metals from aqueous solutions.  For 

example, Pötzschke et al. demonstrated that the electrodeposition of silver from 0.01 M AgClO4 

aqueous solution on highly oriented pyrolytic graphite followed the Volmer–Weber island growth 

mode due to the weak interaction between the substrate and the deposit.124 Brande et al. reported 

that electrodeposition of copper on polycrystalline silver substrate followed the Volmer–Weber 

island growth mode while a layer-by-layer Frank–van der Merve growth mode was demonstrated 

during the copper deposition by magnetron-enhanced sputtering.125, 126 The layer-plus-island 

Stranski-Krastanov growth mode was demonstrated during the electrodeposition of Pd on a well-

defined 111 Pt surface.127, 128  

By combining the electrodeposition and dealloying or templating techniques, NPNMs of 

different morphologies can be prepared.23, 78, 89 Fabrication of nanoporous gold by dealloying an 

electrodeposited Au-Ag alloy has been demonstrated by many research groups.23, 78, 89 

Electrodeposition of noble metals within template voids followed by the template removal resulted 

in the formation of many noble metal porous structures (e.g. NPG from gold electrodeposited on 

polystyrene latex25, 51 and Pd electrodeposited within vertically aligned silica129). 

1.5.2 Electroassisted Deposition of Sol-Gel Derived Materials 

In order to get a good understanding of the electroassisted deposition of sol–gel derived 

materials, this section begins by a concise overview of the sol-gel process history and chemistry 

and ended by discussing the electrodeposition of silica-based thin films.   
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1.5.2.1 Sol-Gel Process 

1.5.2.1.1 Historical Background 

The history of the sol-gel process is relatively old and rich with many events and 

discoveries. Only the remarkable achievements in the field will be addressed in this concise 

historical survey about the sol-gel process. The discovery of the sol-gel process dates back to the 

mid-1800s.130 In 1846 Ebelmen reported the first preparation of a glass-like transparent material 

“SiO2” based on the slow hydrolysis of silicic acid ester (tetraethyl orthosilicate; TEOS) under 

acid-catalyzed conditions.130  About twenty years later (1864), Thomas Graham a Scottish chemist 

introduced for the first time the terms sol and gel through his work on silicic acid and silica sols.131 

These discoveries did not receive considerable attention from the technological community at that 

time due to the exceptionally long time of the process (e.g. the drying step was ~ a year). However, 

the curiosity of the scientific community for preparing new materials did not stop. Almost fifty 

years later, two active groups of German scientists in the University of Göttingen (Patrick)132 and 

Schott Glaswerke company (Geffcken & Berger)133 modified Ebelmen’s method and succeeded to 

reduce the reaction time significantly. In 1919 (Patrick)132 and 1939 (Geffcken & Berger)133,  the 

first two-patent in the field of the sol-gel chemistry regarding the preparation of silica gel and sol-

gel derived oxide coatings, respectively, were accepted. The commercialization of sol-gel products 

started in 1953 and the large scale production occurred in 1959 (automotive TiO2-SiO2-TiO2 rear-

view mirrors).134  
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Although the 70s of the 20th century were a witnesses on a revolution in the fabrication of 

the sol-gel materials or the so-called “sol-gel materials era”,134 the start of the sol-gel materials 

revolution can be traced to the 1950s and 1960s where Roy et al.135 and Schroeder136 prepared a 

large number of colloidal oxides and thin films based on the sol-gel process. The most two 

common forms of colloidal silica particles known these days, Ludox and Stöber spheres were 

developed at that time by Iler (1955)137 and Stöber et al. (1968).138 In the late 60s and early 70s 

Levene et al. and Dislich et al. reported the synthesis of a large number of multicomponent oxides 

utilizing the sol-gel process; their reports are considered the real start for the sol-gel materials 

era.134 So from 1971 till now there is a growing interest in sol-gel materials due to their potential 

applications in the fields of long-lasting fragrances, sensing, separation, catalysis, smart glass, drug 

delivery, inks and protective coatings (e.g. anticorrosion, antimicrobial, easy-to-clean, and 

antiscratch coatings).38 

1.5.2.1.2 Chemistry of the Sol-Gel Process  

Sol is a fluid colloidal system formed by the dispersion of colloidal/nanoparticles (1-100 

nm) in a liquid, e.g. blood and cell fluids.139 Gel is a non-fluid heterogeneous system of liquid 

molecules dispersed in a solid medium with a semi-rigid jelly-like interconnected 3-D network 

and pores in the sub-micrometer range, e.g. silica gel.139 Sol-gel process is a powerful, scalable, 

reproducible and simple strategy that has been used to produce large number of inorganic oxides, 

hydroxides and composites in a variety of forms (powders, fibers, films, etc.) and compositions at 

low temperatures. Sol-gel derived materials are of particular technological importance and have a 
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wide range of potential applications in catalysis, sensing, separation, biotechnology, optical and 

protective coatings, energy conservation, environmental remediation, etc.38    

 In general, sol-gel materials can be prepared from the hydrolysis and polycondensation of 

a liquid precursor/s (e.g. silicon alkoxide) or from a colloidal particle solution as shown in the 

following equations.140 

(a) Hydrolysis 

 

(b) Condensation (through the elimination of water or alcohol) 

 

Further condensation 
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What actually determines the structure of the gel is the relative kinetics of hydrolysis and 

condensation/polycondensation processes (rate constants ratio, kh/kc).
139 In general, the hydrolysis 

and condensation are slow processes occurring simultaneously and kinetics of the reactions is a 

pH dependent. So, catalyst (acid H3O
+ or base OH-) addition is essential to enhance the slow rates 

of the hydrolysis and the polycondensation reactions and control the structure of the resulting 

gel.38, 139 Under acid-catalyzed conditions, the silica monomers will polymerize mostly in linear-

like structures/gels with a small degree of cross-linkage due to the enhancement in the rate of the 

hydrolysis reaction over that of the condensation reaction.38, 139 Highly cross-linked branched gels 

are produced when the rate of the condensation is higher than that of the hydrolysis, which is the 

case in base-catalyzed reactions.38, 139 Although pH is a major player in controlling the relative 

rates of the hydrolysis and polycondensation and so the final structure of the gel, there are other 

parameters that can affect the kinetics of the process such as the reaction temperature, precursor/s 

concentration and type, and solvent nature.38, 139, 141  

Generally, in silica gel there are two possible cyclic siloxane structures that can be adopted 

by the SiO units as shown in Figure 1.10. The 4-rings structure is predominant in silica gels 

derived from pure silicon alkoxide precursors (e.g. tetramethoxysilane TMOS) while alkyl 

alkoxides precursors (e.g. methyltrimethoxysilane, MeTMOS) favor the formation of a 6-rings 

structures.38 Xerogels or aerogels could be obtained based on the drying protocol of the wet gel 

(e.g. alcogel). The former is usually obtained by thermal treatment at ambient pressure while 

supercritical drying is used to produce aerogels. 
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Figure 1.10. Schematic diagrams of possible cyclic siloxane structures in silica gels. 

Reprinted with permission from reference 38. Copyright 2013 American Chemical Society. 

 

Traditionally, silica-based thin films are prepared from a silica sol (silicon alkoxide 

precursor + ethanol + water + acid or base catalyst) by spin-coating, dip-coating or spraying.142 

Typically these techniques involve the coating of a suitable substrate with silica sol followed by 

aging and drying at moderate temperatures where gelation and solvent evaporation events occur 

simultaneously and a three-dimensional network is formed.142, 143 As a consequence of the 

simultaneous deposition and drying, the resulting films tend to be compact and not very porous. 

142, 143 Another disadvantage of the traditional techniques is that thick films are difficult to be 

obtained and usually crack during the drying process due to the large lateral stress.143, 144 An 

alternative route for the fabrication of silica-based thin films that overcomes these drawbacks and 

holds many promising advantages over the traditional ones is the sol-gel electrodeposition 

approach.40, 140  
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(1.8) 

(1.9) 

(1.7) 

1.5.2.2 Electrodeposition of Sol–Gel Derived Silica Films 

Electrochemical deposition, also known as electrolytic deposition, is an attractive and 

versatile approach to prepare metal and/or metal oxides films and nanostructures on substrates of 

varying geometry and size, both patterned and unpatterned as pointed out earlier.145, 146  

Advantages include low cost, simplicity, and ability to tailor the properties of the material such as 

its composition, thickness, and porosity through variations in process parameters such as time, 

potential, and concentration.  Metal electrodeposition can take place at the electrode/solution 

interface by a number of different routes including the direct reduction of a metal ion/metal ion 

complex as mentioned earlier and/or via electrogeneration of base leading to deposition.146 For 

sol-gel electrodeposition, deposition takes place by the electrogeneration of the polycondensation 

base catalyst (OH-) at the electrode/electrolyte interface141, 147 from the reduction of oxygen and/or 

solvent (H2O in EtOH/H2O system) upon the application of sufficiently negative potentials to the 

electrode surface.148  

 

The electrogenerated OH- catalyzes the polycondensation of the metal precursors (e.g. 

metal ions), which results in the formation of colloidal particles that aggregate to produce a solid 

metal oxide film at the electrode/electrolyte interface.40, 141, 148-152 The characteristics of the 
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electrodeposited metal oxide depend on a number of variables including the magnitude of applied 

cathodic potential, concentration of the metal precursor, composition of the electroplating solution 

and the nature and cleanliness of the conductive substrate at which the electrochemical reduction 

reaction takes place. For example, the precipitation of nickel hydroxide on the electrode surface 

via the electrogeneration of OH- in a nickel nitrate solution.146  

Metal oxide films can also be formed from sol-gel monomers via in situ electrogeneration 

of OH-.  In this case, the production of OH- at the electrode surface catalyzes the polycondensation 

the pre-hydrolyzed monomeric precursors near the electrode surface leading to the deposition of a 

relatively porous film.40, 141, 148-152  The history of the sol-gel (e.g. silica) electrodeposition is 

relatively new and date backs to 1999 when Mandler and co-workers demonstrated for the first 

time the cathodic electrodeposition of “methylated sol-gel films”. Silica thin films were 

electrodeposited from a pre-hydrolyzed silica monomer (e.g. methyltrimethoxysilane, MeTMOS) 

on indium-tin-oxide (ITO) and gold substrates. Application of a sufficiently negative potential 

resulted in the electrogeneration of OH- at the electrode/electrolyte interface which catalyzed the 

condensation of the pre-hydrolyzed MeTMOS and finally deposition of the sol-gel derived silica 

film at the electrode surface. Control over the thickness of the precipitated silica films was 

achieved by controlling the magnitude of the applied negative potential. Four years later, the 

cathodic electrodeposition of silica-based films from new precursors and on new substrates was 

demonstrated by Collinson’s and Walcarius’s research groups, separately. Collinson and co-

workers, electrodeposited silica films on glassy carbon electrodes from a pre-hydrolyzed 
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tetramethoxysilane (TMOS) by applying a large enough negative potential.148 Films with thickness 

in the range of 75 nm to 15 m were obtained by varying the magnitude of the applied cathodic 

potential. They went one step further and proved that it is feasible to trap chemical regents (e.g. 

ferrocene methanol) within the framework of the growing silica films by mixing the chemical 

reagent with the pre-hydrolyzed TMOS sol before the electrodeposition event starts.148 Walcarius 

and co-workers electrodeposited silica-based films on gold electrodes from a pre-hydrolyzed (3-

mercaptopropyl)trimethoxysilane (MPTMS).153 Later, they showed that the use of “glue” is crucial 

to form a well adhered silica film on gold electrodes.151, 154 They used a very thin film of MPTMS 

as a glue to strongly and covalently attach the growing silica film to the surface of gold 

electrodes.151, 154 The 2003 potential contributions of Collinson and Walcarius paved the road for 

the wide spreading of the electroassisted sol-gel route initially developed by Mandler and co-

workers.                 

The electroassisted sol-gel route, in particular, has opened up new avenues for the 

formation of porous silica structures on a variety of different substrates that couldn’t otherwise be 

made using conventional spin coating or dip coating techniques including patterned surfaces and 

printed circuits.155-157  Furthermore, when combined with electrochemical reduction of easily 

reducible metal salts, the electroassisted sol-gel route provides a unique and powerful approach to 

fabricate metal-metal oxide nanocomposites.41 Such nanocomposites are interesting and valuable 

materials because their physical and chemical properties are different than those of the pure 

components, often enhancing the capabilities of the material allowing new potential applications 
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to be pursued.158 The pioneering work of Avinr and Mandler in the electrodeposition of sol-gel 

derived silica thin films, copper-silica and gold nanoparticles-silica nanocomposites40, 41,159 

inspired us to develop methodologies for the co-electrodeposition of new silica-based 

nanocomposites and then explore their utilization as building blocks to fabricate high surface area 

porous metal electrodes. Other examples of reported work include the formation of Cu-TiO2,
160 

Ni-SiO2,
161 Zn-SiO2

162 composite films and most recently TiO2-SiO2
163 and polymer-SiO2 

composite films164.   

1.5.3 Cathodic Electrodeposition of Conducting Polymers 

 Conducting polymers have fascinated scientists due to their important properties and 

potential technological applications in energy storage, electrocatalysis, and chemical sensing, as 

well as in the fabrication of flexible electronics, supercapacitors, batteries, etc.165-169 However, 

reduced mechanical properties, stability and processability of the conductive polymer materials 

have often limited such applications. Conducting polymers can be prepared chemically via 

addition of an oxidizing (e.g. FeCl3) or electrochemically via direct oxidation of monomers 

through the application of anodic potential or electrogeneration of an oxidizing agent.167, 168, 170, 171 

The advantage that an electrochemical method provides is the ability to control and fine-tune the 

film thickness and nanoscale morphology of the composite material by simply varying the applied 

potential. In 2009 Choi and co-workers171 demonstrated the ability to form a conducting polymer, 

e.g., polypyrrole cathodically by coupling the electrogeneration of the nitrosonium ion (NO+), as 

an oxidizing agent with the oxidative polymerization of the pyrrole monomers. NO+ ions were 
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generated through the electrochemical reduction of NO3
- ions in a strongly acidic aqueous 

environment as shown in the following equations. 

 

A particulate-like polypyrrole thin film was then cathodically deposited on a copper 

substrate by the reaction of the electrogenerated oxidizing agent NO+ ions and pyrrole monomers 

at the electrode surface.171 Since then, few reports about conducting polymer formation via 

cathodic deposition have been published. For example, Koh et al., reported that cathodic 

electrodeposition of three-dimensional mesoporous polypyrrole structures on copper electrodes 

via the in situ electrogeneration of an oxidizing agent, the NO+ ions.172 The morphology of the 

deposited films was found to be a function of the magnitude of the applied negative potential where 

at low current densities (e.g. -0.5 and -0.6 volts) films composed of spherical particles were 

obtained while nanorods-like structured films were obtained at high current densities (e.g. -0.7 

volts). The formation of such structures was revealed to the dependence of the polypyrrole 

polymerization kinetics on the concentration of the in situ electrogenerated NO+ ions. No details, 

however, were given about how the concentration of the NO+ ions affects the morphology of a 

deposited polypyrrole film. Nam et al., demonstrated the synthesis of polypyrrole nanowires-based 

thin films by cathodic electropolymerization.173 Application of cathodic pulses to the oxidizable 

substrate surface (e.g. Cu and Ni) resulted in the formation of  NO+ ions, which act as oxidizing 

agent to oxidize the pyrrole monomers and a polypyrrole thin film is eventually deposited. The 
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effect of the aqueous-based electrodeposition solution composition (e.g. NaNO3 and pyrrole) on 

the morphology of the deposited polypyrrole films was studied. He proposed that the morphology 

of the resulting polypyrrole film was dependent of the reactivity of the pyrrole radical cation, which 

results from the interaction between the NO+ ions and the pyrrole monomers.173 I do believe that 

it is more convenient to correlate the morphology changes in the deposited polypyrrole structures 

to the population of the produced pyrrole radical cations at the electrode surface rather than the 

reactivity. As the NaNO3 concentration increased, the morphology of the deposited films changed 

from wire-like to particulate-like due to the production of large number of the NO+ ions that 

interact with the pyrrole monomers to produce a large population of the pyrrole radical cations. 

The radical cations interact quickly with each other to deposit films composed of spherical 

particles. Nam revealed the formation of these particulate-like films to the formation of highly 

reactive radical cations.173 A similar effect was observed with the decrease of the pyrrole monomer 

concertation and attributed again to the reactivity of the produced radical cations. Hnida et al, 

combined the conducting polymers cathodic deposition approach with the templating technique to 

produce polypyrrole-Ag nanowires.174 Nanowires with 80 nm diameter of polypyrrole decorated 

with silver particles were obtained by the cathodic co-electrodeposition of silver and pyrrole within 

the pores of anodic aluminum oxide (AAO) template followed by the template removal. In recent 

work by Mandler and co-workers, polymer-silica nanocomposite films were prepared via 

application of alternating potentials.164  Polypyrrole was deposited upon application of an anodic 

potential pulse while silica was deposited during the cathodic pulse. A composite film was thus 
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produced, with the morphology and extent of homogeneity of the deposits dependent on the 

applied potentials, the order of their application, deposition time and electrode material.164                

1.6 Why are New Fabrication Strategies for Nanostructured Porous Materials 

Required? 

Although the aforementioned fabrication techniques possess merits and have been proven 

to be suitable routes to prepare a variety of NPNMs, the implementation of these methods to 

prepare nanoporous precious metals still represents a challenge in many circumstances. The liquid 

crystal templating technique is inapplicable to produce porous gold due to auto-reduction of the 

gold ions to gold nanoparticles.34, 175, 176 Hard templating is a time consuming multistep process in 

that it requires the preparation of a sacrificial template, metal deposition within the pores of the 

sacrificial template, and generation of the porous metal structure after the removal of the original 

template.177 In general, templating approaches are difficult to implement for the large-scale 

production due to the necessity to adopt many factors in the templating process (e.g. concentration, 

temperature, pH, etc.), the limitation to produce one-dimensional porous structures at most (e.g. 

array of tubes), and the absence of dynamic control over the length scale are disadvantageous.42 

Although the apparent simplicity of the dealloying technique, in which the porous metal structure 

is obtained by the selective removal of the least noble competent from an alloy in a corrosive 

medium (e.g. silver in silver-rich gold alloy), it has some shortcomings such as the use of elevated 

temperatures in the preparation of desirable alloys, the sophisticated manipulation required to 

handle the ultra-thin commercially available gold leaf (~ 100 nm in thickness), and the thermal 
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treatment required after the dealloying process to control the pore size for specific applications.43, 

178 Other preparation techniques usually include the use of high temperatures, expensive 

equipment, or high vacuum.177, 179 However, most of these drawbacks could be overcome by using 

electrodeposition methods to prepare the alloys. Therefore, there is a need to explore novel and 

robust strategies for the fabrication of nanostructured porous noble metals and/ or development of 

the existing ones. Based on the previous discussion and literature reviews, the electrochemical-

based fabrication methods are potential candidates for nanostructured porous materials fabrication 

due to the simplicity, and possibility to create new materials, particularly, composites that have 

not been made before which may overcome issues related to reproducibility, scalability, etc. For 

example, the electrochemical sol-gel approach holds the promise for a facile synthesis of silica-

based nanocomposite films that can be used as building blocks in the synthesis of high surface area 

nanostructured porous precious metal and polymer electrodes. Dealloying of the electrodeposited 

metal alloys represents the only promising route so far for the preparation of 3D bicontinuous 

nanoporous precious metal structures. 

1.7 Thesis Statement 

The goals of this dissertation work are to design and develop novel, reliable and 

reproducible synthetic protocols to fabricate new nanoporous metal/sol-gel, metal/polymer sol-

gel, and binary metal nanocomposites using the electroassisted sol-gel deposition and/ or 

electrodeposition approaches, study the different factors that affect material formation in order to 

understand the reaction mechanism and achieve control over composition, thickness, morphology 
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and surface area, and explore the possibility of using these nanocomposites as building blocks for 

the fabrication of high surface area noble metal electrodes for electrochemical applications 

including biosensing in complex matrices and potential catalytic application in fuel cells.  The 

three nanocomposite materials designed and fabricated in this work are:  

1.  Gold-Silica Nanocomposites for the fabrication of nanostructured coral gold (Ch. 3) 

2. Polymer-Silica-Silver Nanocomposites for the fabrication of free-standing pure and 

hybrid polymer thin films (Ch. 4) 

3. Platinum-Silver Binary Alloy Films for the fabrication of 3D bicontinuous nanoporous 

platinum (Ch. 5).   
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2.1 Introduction   

The unique properties of nanoporous materials are dependent of their chemical, physical 

and structural characteristics. As a result, characterization of the nanoporous materials is of a 

particular importance not only to determine the nanoporous material properties but also to 

understand the mechanism behind its formation and to explore possible potential applications. In 

this regard, the following chapter will provide a brief review on the main characterization 

techniques used in this research work. The chapter begins with the discussion of cyclic 

voltammetry, the major electroanalytical technique used in this work to study the 

electrochemical properties of the prepared nanoporous electrodes and to measure their 

electrochemically active surface area. Then, the electrochemical technique, chronoamperometry, 

used in the co-electrodeposition of the nanocomposite and alloys thin films (from them the 

nanoporous materials were prepared) will be discussed. The electrochemical characterization 

will be followed by discussion of scanning electron microscopy, the main technique used to 

investigate the microstructure and surface morphology of the prepared nanoporous structures. X-

ray techniques used to determine the bulk and surface chemical composition of the as-prepared 

nanocomposites, alloys and the corresponding nanoporous films. Surface profilometry technique 

used to measure the thickness and investigate the surface roughness of the as-prepared 

nanocomposites and the corresponding nanoporous films will be the close of this chapter.   

2.2 Electrochemical Techniques 

For all the studied systems, preparation of the nanocomposite and alloy films and 

determination of the electrochemical characteristics of the corresponding nanostructured porous 

electrodes were carried out with a CHI-1000A multichannel potentiostat in a conventional three-

electrode electrochemical cell. 
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Voltammetry is a series of controlled potential electrochemical techniques and it serves at the 

heart of the modern electroanalytical chemistry.1, 2 Voltammetry involves measuring the current 

flowing through an electrochemical cell as a function of the applied potential to the working 

electrode. The current versus potential curve is called a voltammogram and it provides valuable 

information about a redox reaction taking place at the working electrode. The history of 

voltammetry dates back to the twenties of the nineteenth century where a Czech chemist 

“Jaroslav Heyrovský” invented the first voltammetric techniques named polarography in 1922 

for which he awarded the 1959 Nobel Prize in chemistry.3 Based on the nature of the applied 

potential function and the working electrode material, different types of voltammetric techniques 

are distinguished.1, 2 Among the different types of voltammetric methods, I will focus only on the 

two techniques used in this work: cyclic voltammetry and chronoamperometry.  

Voltammetry experiments are typically undertaken in a three-electrode electrochemical 

cell, such as that shown in Figure 2.1. The electrochemical cells consists of a working/indicator 

electrode (WE), reference electrode (RE), and counter/auxiliary electrode (CE).  

 

Figure 2.1. Three-electrode electrochemical cell  
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The working electrode should allow electron transfer because on its surface the electrochemical 

reaction of interested (reduction or oxidation) takes place and it should be inert within the 

electrochemical reaction potential window (potential range at which the working electrode, 

supporting electrolyte and solvent are electrochemically inactive) to avoid its oxidation or 

reduction and to prevent its interaction with the redox species. Usually, working electrodes are 

constructed from noble metals (e.g. gold or platinum) or conductive carbon materials such as 

glassy carbon electrodes. Reference electrodes are designed to have a well-known and 

constant/stable potential such as silver/silver chloride Ag/AgCl electrode and saturated calomel 

electrode (SCE) Hg/HgCl. The applied potential to the working electrode is determined with 

respect to the reference electrode. The auxiliary (or counter) electrode is used to avoid current 

flow through the reference electrode during the voltammetric measurements and to complete the 

electric circuit where the current flowing between the working electrode and the counter 

electrode is recorded. An electrochemical reaction opposite to that occurring at the working 

electrode is taking place at the auxiliary electrode, this is why the two electrodes should be far 

apart from each other and to avoid any inference with the working electrode reaction. The most 

common counter electrodes are made from platinum such as Pt wire, Pt mesh and Pt foil 

electrodes, carbon and gold are other examples of the counter electrodes.  

In this work, planar gold, planar platinum, nanoporous gold, and nanoporous platinum 

electrodes were used as working electrodes. A silver/silver chloride Ag/AgCl wire or frit 

electrodes (Ag/AgCl (1.0 M KCl)) were used as reference electrodes. The counter electrodes 

used in this work are platinum wire, platinum mesh and platinum wire coated with polypyrrole 

electrodes.   
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2.2.1 Cyclic Voltammetry  

Cyclic Voltammetry (CV) is a widely used electroanalytical technique to study  

oxidation-reduction (redox) reactions.1, 2 The importance of CV measurements originate from 

their ability to provide not only rapid qualitative and quantitative information about 

electrochemical systems (e.g. chemical identity, redox potential and concentration of the 

electroactive species) but also valuable information about the electrochemical reaction 

mechanism, electron transfer kinetics, thermodynamic parameters and diffusion coefficients of 

the electroactive species. In the current study, CV was used to measure the electrochemically 

active surface area of the nanoporous metal electrodes (e.g. Au and Pt) and to study the 

electrochemical response of the nanoporous electrodes towards K3[Fe(CN)6], ferrocenemethanol 

and ascorbic acid before and after exposure to fibrinogen, a common biofouling agent. 

Cyclic voltammetry is a reversal sweep technique, so in a typical CV experiment the 

potential at the working electrode is linearly changed between two potential limits (Einitial and 

Efinal) in isosceles triangle potential waveform fashion.1, 2 As can been seen in Figure 2.2, 

the potential of the working electrode is ramped linearly versus time till it reached the set point 

(end of the forward scan, Efinal) at which the potential sweep is reversed in direction to return 

back to the initial potential value (end of the backward scan and so the CV cycle, Einitial). The 

point at which the potential changed its direction is called the switching potential and it has 

enough voltage to induce reduction or oxidation of the analyte (species of interest).   
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 Figure 2.2. Potential waveform for cyclic voltammetry. (Adopted from ref. 1).  

A typical CV of a reversible redox couple undergoing a single electron redox process, 

with an oxidized and reduced forms that are stable during the CV experiment, is shown in 

Figure 2.3. 

  

Figure 2.3. Typical cyclic voltammogram of a reversible redox couple, 1 mM FcCH2OH/ 0.1 M 

KCl on NPG electrode at 10 mV/s. 
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For a typical reversible redox couple the initial and the final potentials are identical, the ratio of 

the cathodic peak current (ipc) to the anodic peak current (ipa) is one and the peak separation is 

given by Ep = 59/n mV in case of a Nernstian behavior.1, 2 Although, the peak splitting is 

independent of the scan rate for electrochemically reversible electrochemical reactions, it 

depends on the scan rate in case of the quasi-reversible electrochemical reactions which 

characterized with E > 59/n mV. Irreversible electrochemical reactions display only one peak 

(either oxidation or reduction) where the product of the redox reaction is unstable.  An  example 

is the oxidation of ascorbic acid and the electrochemical generation of OH- ions.1, 2 

For a reversible electrochemical reaction, many useful information could be obtained 

from the CV.  For example, the aforementioned peak separation (Ep) can be used to determine 

the number of the electrons (n) that participate in the electrochemical reaction. Also, a Ep of 

59/n volts implies that the electrochemical reaction follows Nernstian behavior. Under those 

conditions, the formal potential (Eoʹ) of a reversible redox couple can be calculated according to 

the following relation:1, 2 

 
𝐸𝑜ʹ =  

𝐸𝑝𝑎 +  𝐸𝑝𝑐

2
 (2.1) 

The peak current for reversible redox couple at 25 oC is governed by Randles-Sevcik equation:1, 2 

 𝑖𝑝 = (2.69 𝑥 105)𝑛3/2 𝐴 𝐶 𝐷1/2 𝑣1/2 (2.2) 

where A is the electrode area in cm2, C is the molar concertation of the electroactive species, D is 

the diffusion coefficient in cm2/s and  is the scan rate in V/s.  
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2.2.2 Chronoamperometry  

Chronoamperometry is another electrochemical technique used in this work to co-

electrodeposit metal-metal alloys, metal-silica and polymer-silica nanocomposites. In a typical 

experiment, the potential of the working electrode is held constant/stepped and the resulting 

current-time transient is recorded. Ideally, the potential applied at the working electrode is 

stepped between two values E1 and E2 as shown is Figure 2.4 a, where E1 is the initial potential 

of the electrode and at which no Faradaic reactions occur while E2 is the potential at which a 

Faradaic process occurs (oxidation or reduction). Upon the application of E2 the concentration of 

the electroactive species at the electrode surface is depleted as a result a concentration gradient is 

formed and the current decreases with time as we can see in Figure 2.4 b and c.   

For a reaction in which the mass transport is controlled only by diffusion (stationary 

planar electrode and unstirred solution), the current decays (current-time relationship) is 

controlled by Cottrell equation:1, 2  

 
𝑖 =  

𝑛𝐹𝐴𝐶0𝐷1/2

𝜋1/2 𝑡1/2
 (2.3) 

 

where n is the number of electrons involved in the redox reaction, F is Faraday’s constant, A is 

the electrode surface area, C0 is the molar concentration of the electroactive species, D is the 

diffusion coefficient and t is the reaction time. In the present dissertation work, gold-silica 

nanocomposites prepared at a reaction time between 5 to 30 min, polypyrrole-silica 

nanocomposites electrodeposited for 30 min, and silver-rich platinum alloys obtained at a 

deposition time of 10 min. 
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Figure 2.4. Typical chronoamperometric potential waveform (a), the corresponding 

concentration gradient profile as the reaction time proceeds (b) and the resulting current-time 

response (c). (Adopted from ref. 1). 
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2.3 Scanning Electron Microscopy (SEM) 

In general, advanced electron microscopic/imaging techniques are required to study the 

microstructure, surface morphology and chemical composition of the nanostructured materials in 

order to determine their properties and potential applications. In this arena, Scanning Electron 

Microscopy (SEM) is a powerful tool to study such interesting characteristics. In the present 

work field, emission scanning electron microscopes (FE-SEM, HITACHI SU-70) equipped with 

energy dispersive X-ray spectrometer was used to study the nanoscale features/microstructure 

and chemical composition of the prepared nanocomposite and alloy materials and the 

corresponding nanoporous structures. 

Ernst Abbe’s law and microscope resolution: the resolution limits (e.g. minimum distance 

at which two structures can be seen as two distinct and separate entities.) of human eye and 

regular optical microscope are ~100 m and 0.2 m, respectively, according to Ernst Abbe’s 

law4, 5 which stated that the resolution limit of a microscope (d) is dependent of the wavelength 

of the imaging radiation (): 

 
𝑑 =  

0.612 𝜆

𝑁𝐴
 (2.4) 

where NA is the numerical aperture and it equals “n sin ” where n is refraction index of the 

medium and  is half aperture angle. In the early 1930s, an electron-beam and focusing 

electromagnetic condenser lens were introduced to the field of microscopy and in 1931 the first 

transmission electron microscope (TEM) was invented by Max Knoll and Ernst Ruska in 

Germany.4-6 Six years later, in 1937, Manfred Von Ardenne introduced the first scanning 

electron microscope which became commercially available in 1965 by Cambridge Scientific 

Instrument Company.4-6 The resolution limit of the images dramatically enhanced, due to the 

shorter wavelength of the electron-beam with respect to the light photons, to be 0.1 nm in the 
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TEM and 1 nm in the SEM. In SEM, the images are produce by a raster scan (point by point 

scan) similar to that in the TV.4-7  

It is important to know the modes of mater interactions with the high energy focused 

electron-beam and the main components of the SEM microscope to better understand how the 

SEM images are collected. Although bombardment of the sample surface with a focused 

electron-beam leads to the generation of many signals4-7 due to the elastic and inelastic 

interactions of the electron-beam with the sample as can be seen in Figure 2.5, only three types 

of signals will be addressed here.  

 

Figure 2.5. Illustration of the different signals generated by the electron beam-sample 

interactions in the scanning electron microscope.(Adopted from ref. 7).  

The first type of signal is from the backscattered electrons (BSEs) and they are used to 

provide SEM images of different color intensities to provide valuable information about the 

sample composition (number of phases). BSEs are high energy electrons (E ≥ 50 eV) produced 
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from the elastic interaction between incident electron-beam and the electric filed of the sample 

atomic nucleus.4-6 The number of BSEs is dependent on the chemical nature of the sample 

elements. An element with a higher atomic number will produce more BSEs than a lighter one 

due to the presence of more positive charges in its nucleus. The BSEs SEM image shows 

contrasts in composition where lighter elements appear darker than the heavy ones. The most 

important type of signals in SEM is the secondary electrons, which are low energy electrons (e.g. 

3-5 eV) emitted due to the inelastic interactions between the incident electron-beam and the 

sample surface electrons. Typically, loosely bound electrons escape within few nanometers from 

the sample’s surface. The secondary electron’s SEM image provides important information about 

the sample surface topography. The third type of signals is the characteristic X-rays photons 

produced during the inelastic collision between the incident electron-beam and the sample atoms. 

By analyzing the characteristic X-rays using energy–dispersive X-ray spectroscopy, the 

elemental composition of the sample can be determined. Usually the SEM instruments are 

equipped with energy–dispersive X-ray probe.4-7  

Figure 2.6 shows the main components of the scanning electron microscope. Electrons 

are produced by an electron gun (e.g. W-hairpin or LaB6) and accelerated to an energy of 0.1-30 

keV. The accelerated electron-beam is characterized by a large diameter and cannot produce a 

high resolution images.  Two sets of electromagnetic condenser lenses work in conjunction with 

the condenser and objective apertures to eliminate the high-angle electrons and focus the 

electrons beam into a defined spot on the sample surface. The focused electron beam is 

scanned/swept by a set of coils in a raster fashion. The scanned electron’s beam is focused on a 

specific part of the sample through the objective lens. The produced electrons due to the 

electron-beam interactions with the sample surface are processed by the detectors.4-7 
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Figure 2.6. Schematic illustration of the scanning electron microscope. (Adopted from ref. 6). 

2.4 Energy-Dispersive X-ray Spectroscopy (EDS) 

Although we can obtain some useful information about the sample chemical composition 

such as number of different phases in the sample and their spatial distribution from the 

compositional contrast BSEs images, there is still a need to identify those elements and 

determine their percent composition (atomic or weight %). Elemental analysis of a sample can be 

done using energy dispersive X-ray spectroscopy (EDS), sometimes called energy dispersive X-

ray microanalysis, which is usually integrated into the SEM instrument.5, 8 For the purpose of this 
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work, EDS was used to determine the elemental composition of the as-prepared thin film and the 

corresponding nanoporous structures to confirm the success of the newly developed co-

electrodeposition strategies and examine the efficiency of the new dealloying/etching techniques 

used in this work. EDS elemental mapping was used to study the spatial distribution of the 

different phases in the as-prepared thin films. EDS is based on the fact that each element has a 

unique atomic structure differs from that of the other elements. As a result each element displays 

a characteristic X-ray emission spectrum. In EDS the sample is bombarded with a high energy 

electron-beam then the number and energy of the characteristics X-ray photons emitted are 

measured and used to determine the elemental composition of the sample.5, 8 

Figure 2.7 describes the fundamental basics of the energy-dispersive X-ray spectroscopy 

(EDS). An electron hole is generated when the incident high energy electron transfers its energy 

to an inner shell electron. The inner shell electron gets excited and eventually ejected from the 

atom when the transferred energy from the incident electron-beam is high enough. An inner shell 

electron hole is formed in the same position where the ejected electron was. Once the inner shell 

electron hole is created, the atom becomes unstable and an outer shell higher energy electron 

falls down to fill the hole. The excited atom will restore its stability/ground state by emitting the 

superfluous energy, which is the energy difference between the higher and lower energy levels, 

in the form of X-ray photons. The energy of the emitted X-ray is characteristic of the two energy 

levels from which it is derived and of the atomic number of the sample element. Due to the 

unique atomic number/structure of each element, different elements in a sample can be identified 

by analyzing the emitted characteristic X-rays.5, 8 
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Figure 2.7. Schematic representation of the X-ray production through the ejection of an inner-

shell electron. (Adopted from ref. 8)  

The EDS setup consists of four main parts. First, the excitation source, which is an 

electron-beam source in case of EDS integrated with TEM or SEM. Second, X-ray detector such 

as the Si(Li) crystals or the more advanced silicon drift detectors. The Si(Li) crystals detector 

works at low voltages and needs cooling from a liquid nitrogen dewar while the new silicon drift 

detector does not need the liquid nitrogen cooling. The energy of the characteristic X-ray is 

converted into voltage signals by the detector which sends them to a pulse processor. The 

measured voltage signals by the pulse processor are sent to the data analyzer.5, 8 

2.5 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a rapid, reliable and non-destructive characterization technique 

that can provide valuable information about a material based on its diffraction pattern when it 

interacts with an X-ray beam.9-11 In this work, X-ray diffraction patterns were recorded at room 

https://en.wikipedia.org/wiki/X-ray_detector
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Voltage
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temperature in θ-2θ geometry by a PANalytical X’Pert Pro MPD series diffractometer equipped 

with a Pixcel detector and Cu Kα radiation (λ = 1.54060 Å) at an operating voltage of 45 kV and 

40 mA current to determine purity, crystallinity, crystal structure and number of phases (phase 

identification) in the prepared nanocomposite films and the corresponding nanoporous structures. 

In other words, XRD was used to examine the efficiency of the newly developed co-

electrodeposition and etching strategies.  The fundamentals of XRD are based on Bragg's law:  

 𝑛𝜆 =  2𝑑 𝑠𝑖𝑛𝜃 (2.5) 

where d is the spacing between atom layers/crystal planes, n is an integer, θ and λ are the angle 

and wavelength of the incident X-ray beam, respectively.11 

When a beam of monochromatic X-rays bombard a sample, they (X-rays) are partially 

scattered in all directions due to their interaction with the sample’s atoms. Diffraction occurs 

when the wave length of the incident X-rays beam is close to the spacing between crystal planes 

(atom layers) in the sample where a series of constructive and destructive interferences take 

place by the scattered X-rays. This diffraction is governed by Bragg’s law and is similar to that 

obtained when a beam of light diffracted by a grating. An X-ray diffraction peak is obtained 

when the angle of the incident beam obeys Bragg's law and a constructive interference occurs as 

shown in Figure 2.8. Interference of the diffracted X-rays by out of phase atom layers are 

destructive and do not produce a peak in the diffraction pattern.9-11  
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Figure 2.8. Graphical representation of Bragg’s law for the X-ray diffraction. (Adopted from ref. 

11). 

In a typical XRD experiment, the angle of the incident monochromatic X-rays beam is 

systematically changed/scanned in order to detect all possible diffractions from the sample’s 

atom layers. The detected diffractions are processed and counted to construct an XRD diffraction 

pattern which is a plot of the counts (intensity) versus the detector angle (2θ). The detected 

diffraction pattern is a reflection of the samples d-spacings and so it is characteristic of the 

material. Typically, phase identification is carried out by comparing the studied material 

diffraction pattern with reference standards such as the International Center for Diffraction Data 

(ICDD) standards and the Joint Committee on Powder Diffraction Standards (JCPDS). 

There are three main components in any modern X-ray diffractometer as depicted in 

Figure 2.9: An X-ray tube responsible for the X-ray generation, a sample stage to mount the 

sample, and a detector for the diffracted X-rays. The X-ray tube consists of metal filament 

cathode (e.g. W) and metal target anode. The most common metal target anode is copper with Cu 

Kα radiation of 1.5418Å. Upon the application of high enough voltage the metal filament cathode 

gets hot and starts bombarding the metal target with electrons. Then X-ray emission occurs using 

Crystal 

 lattice 

 planes 
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the same principle previous explained in the EDS. The diffractometer is equipped with 

goniometer to control the angle on the incident beam. The most common diffractometer is 

Bragg-Brentano para-focusing diffractometer. 

 

Figure 2.9. Schematic representation of the X–ray diffractometer. (Adopted from ref. 11). 

2.6 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a non-destructive highly surface-sensitive 

spectroscopic technique that can provides quantitative and qualitative information about the 

surface chemistry of a sample. Typically, valuable information such as elemental composition, 

electronic and chemical states can be obtained for the elements that exist in the top surface layers 

of the sample (2-10 nm).12-14 Nowadays, XPS is considered the most widely used technique to 

study the surface chemistry of any material. In the present work, X-ray photoelectron 

spectroscopy analysis was performed on a ThermoFisher ESCALAB 250 imaging X-ray 

photoelectron spectrometer using monochromatic Al K (1486.68 eV) X-ray source equipped 

with a hemispherical analyzer to determine the oxidation states and surface composition of the 

as-prepared nanoporous metal electrodes. An internal flood gun (2 eV electrons) and a low-
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energy Ar+ external flood gun were used for charge compensation during the data collection. 

The spectra were corrected using the aliphatic hydrocarbon C 1s peak at 284.6 eV as a base. For 

XPS data analysis and peak fitting Thermo Scientific AvantageXPS 4.40 and CasaXPS 2.3.16 

programs were used.  

XPS is based on the photoelectric effect, discovered by Heinrich Rudolf Hertz in 1887 and 

explained by Albert Einstein in 1905.12-14 About fifty years later, the first high resolution XPS 

spectrum was obtained by K. Siegbahn’s research group in 1954. K. Siegbahn is a physicist from 

Uppsala University in Sweden and he is the laureate of the 1981 Nobel Prize in Physics for his 

potential contributions in the development of the XPS or what he named ESCA “electron 

spectroscopy for chemical analysis”.12-14 In 1969 he collaborated with Hewlett-Packard company 

in the USA to build the first commercial monochromatic XPS instrument.12-14    

XPS works in ultrahigh vacuum environment where a photoelectron (core/inner-shell 

electron) is generated when a monochromatic soft X-ray with an energy h that is greater than 

the binding energy of the core electron illuminates the sample surface as displayed in Figure 2.7. 

The kinetic energy (Ekinetic) of the escaped photoelectrons is calculated in XPS using a concentric 

hemispherical electron energy analyser (CHA).12-14 The binding energy (Ebinding) of the emitted 

photoelectron/core electron can be calculated from the known energy of the incident 

monochromatic X-ray (e.g. Ephoton for Al Kα X-ray is 1486.7 eV) and the measured Ekinetic of the 

emitted core-electron by using Einstein and Ernest Rutherford relationships: 

 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝜈 (2.6) 

 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  𝐸𝑝ℎ𝑜𝑡𝑜𝑛 −  𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 −  Φ (2.7) 

where Φ is the work function of the CHA  and Ebinding is characteristic of the element from which 

it originated.12-14 The XPS spectrum is a representation of intensity (number of counts) of the 
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emitted photoelectrons as a function of their binding energy. For an element, the peak shape and 

position are reflections of its chemical state while the peak area normalized by appropriate 

sensitivity factor gives the element percent composition with parts per thousand (0.1 at %) 

detection limit. In order to determine the peak position with high accuracy, it is recommended to 

use charge referencing material to compensate any charge induced shift. The C (1s) XPS peak 

located at 284.6 eV is the most widely used charge correction reference.12-14   

Figure 2.10 shows the main components of the XPS instrument: (a) X-ray source such as 

Al Kα (1486.6eV) and Mg Kα (1253.6eV) (b) ultrahigh vacuum environment and (c) electron 

energy analyzer.12-14 

 

Figure 2.10. Graphical representation of the main components of the XPS system. (Adopted 

from ref. 13) 



www.manaraa.com

75 
 

2.7 Contact Surface Profilometry Analysis 

In order to study and quantify the surface roughness and measure the thickness of the as-

prepared thin films, contact/stylus-based surface profilometry measurements were conducted on 

a sharp edge of the target films. For all the thickness and roughness measurements, a stylus-

based surface profilometer (Surface Profiler, KLA-Tencor Co., San Jose, CA) was used to 

collect the surface profiles as depicted in Figure 2.11. The contact profilometer is equipped with 

a fine-tip diamond stylus that moves for a specific distance across the film and with a specific 

contact force to record the sample surface profile, where there is a linear relationship between the 

stylus vertical displacement and the roughness (height variations) of the surface.15 A standard 

diamond stylus with 5 µm radius was used in the present work. Typically, surface features with 

height ranged from 10 nm to 1.0 mm can be measured.15   

The contact surface profilometry is inexpensive, easy to implement and an acceptable 

standard by most of the world's surface finish manufacturers. Being in contact with the surface is 

advantageous for many reasons. First, the measurement is not sensitive to surface color, 

reflectance or contaminants, which enables studies to be performed on variety of substrates even 

in dirty environments. Second, the measurement is direct and no modeling is required to 

construct the surface profile of a sample. Furthermore, it has a better resolution than the white-

light optical profilometer. 
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Figure 2.11. Photograph of the KLA-Tencor Alpha-Step IQ surface profiler. 
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3. Chapter 3: Fabrication of Nanostructured Porous Gold 
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3.1. Introduction 

This chapter is reprinted with permission from reference 1. Copyright 2014 American 

Chemical Society.1 Electrochemical deposition is an attractive and versatile approach to prepare 

metal and/or metal oxides films and nanostructures on substrates of varying geometry and size, 

both patterned and unpatterned.2-5 Advantages include low cost, simplicity, and ability to tailor 

the properties of the material such as its composition, thickness, and porosity through variations 

in process parameters such as time, potential, and concentration. Metal electrodeposition can 

take place at the electrode/solution interface by a number of different routes including the direct 

reduction of a metal ion/metal ion complex and/or via electrogeneration of base leading to 

deposition.3 A known example of the former is the three-electron reduction of AuCl4
− to metallic 

gold whereas an example of the latter is the precipitation of nickel hydroxide on the electrode 

surface via the electrogeneration of OH− in a nickel nitrate solution.3   

Metal oxide films can also be formed from sol-gel monomers through electrochemically 

assisted precipitation6-8 or via electrogeneration of OH−.9  In the latter case, the production of 

OH− at the electrode surface hydrolyzes and/or condenses the monomeric precursors near the 

electrode surface leading to the formation of a relatively porous film.9-15 The electroassisted sol-

gel route, in particular, has opened up new avenues for the formation of porous silica structures 

on a variety of different substrates that couldn’t otherwise be made using conventional spin 

coating or dip coating techniques including patterned surfaces and printed circuits.16-18  

Furthermore, when combined with electrochemical reduction of easily reducible metal salts, the 
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electroassisted sol-gel route provides a unique and powerful approach to fabricate metal-metal 

oxide nanocomposites.19 Such nanocomposites are interesting and valuable materials because 

their physical and chemical properties are different than those of the pure components, often 

enhancing the capabilities of the material allowing new potential applications to be pursued.20 

Examples of reported work include the formation of gold nanoparticle-SiO2,
21 Au/SiO2 

nanoparticles,22 Cu-SiO2,
19, 20 Cu-TiO2,

23 Ni-SiO2,
24 Zn-SiO2

25 composite films and most 

recently TiO2-SiO2
26 and polymer-SiO2 composite films27.  

What is unique about these nanocomposite films is that they can be prepared in a single 

step from two independent redox reactions occurring at or near the same point in time utilizing a 

very simple, low cost electrochemical technique.19, 24 The chemical and physical properties can 

be tailored by varying the ratio of precursors and electrodeposition parameters, and furthermore, 

the method can be extended to conductive supports of varying types and dimensions.19 

Surprisingly, however, only limited attention has been given to the formation of metal/sol-gel 

derived nanocomposite coatings using this novel co-electrodeposition approach.19-25   

In this work, we report the co-electrodeposition of gold/sol-gel nanocomposite thin films 

and introduce a novel, robust and reliable strategy for the fabrication of high surface area - 

nanostructured porous gold (NSPG) frameworks from these nanocomposites. The as-prepared 

Au-SiO2 films possess an interconnected three-dimensional porous framework with different 

silica – gold ratios depending on the deposition solutions and parameters. By treating these 

nanocomposite materials as heterogeneous alloys, one component (e.g., silica) can be selectively 
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removed from the film to produce high surface area conductive materials with a coral-like open 

porous nanostructure. The surface area, morphology and the thickness of these nanostructured 

gold thin films can be fine-tuned via variations in the deposition potential, deposition time, sol-

gel monomer concentration and gold ion concentration. High surface area nanostructured 

electrodes have attracted considerable interest in the field of analytical and materials chemistry 

where these conductive 3D porous frameworks can give rise to increased sensitivity, lower 

detection limits, and better signal-to-noise ratios compared to unmodified planar electrodes.28-35 

The work described herein presents a simple, cost-effective strategy for making such materials 

from an electrodeposited metal-metal oxide porous nanocomposite.  

3.2. Experimental Section 

 Reagents and Materials   

Potassium tetrachloroaurate (III) (KAuCl4, 98%), tetramethoxysilane (TMOS, 99%), 

potassium chloride (KCl), hydrofluoric acid (HF, 48-50 w/w%), and absolute ethyl alcohol 

(EtOH, 200 proof, ACS/USP grade) were purchased and used as received. Ultrapure type-I water 

was obtained using a Millipore Milli-Q purification system. Gold-coated glass slides with a 5 

nm-titanium adhesion layer were obtained from EMF, Ithaca NY.  

 Co-Electrodeposition of Gold/Sol-Gel (Au-SiO2) Nanocomposite Thin Films 

Gold-coated slides were cut to produce rectangular electrodes of 1 x 2.5 cm. The electrodes 

were cleaned by successive sonication in ethanol and water, three times, and then dried at room 

temperature, flushed with nitrogen and plasma cleaned (PE2000 RF Plasma Etcher, South Bay 

http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_11008441__-1_0
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Technology) at 30 W, DC bias of -280 V and 150 mtorr for 3 min. An electrode area of 0.32 cm2 

was defined by a ¼ in. circle in a piece of UHMW Polyethylene tape (CS Hyde) placed over the 

surface of the gold-coated slide. The co-electrodeposition of Au-SiO2 nanocomposite thin films 

was carried out in a standard three-electrode electrochemical cell in the absence of stirring. The 

reference electrode was a silver chloride-coated silver wire (Ag/AgCl) while a platinum wire was 

utilized as a counter electrode. Different silica sols were prepared by stirring the assigned 

amounts of absolute ethanol (2.45 to 2.1 mL), sol-gel monomer (TMOS, 0.05 to 0.4 mL), and 

KCl (supporting electrolyte, 2.5 mL) at 400 rpm (via a Magstir genie magnetic stirrer) for 50 

min. The multicomponent electroplating solution was prepared by mixing the prehydrolyzed 

silica sol with the desired amount KAuCl4 (5-40 mg) at 400 rpm for 25 min. In all the 

experiments, the concentration of KCl and the volume of the electroplating solution were kept 

constants at 0.2 M and 5 mL, respectively.  

The co-electrodeposition of Au-SiO2 nanocomposite films was conducted under an 

amperometric mode by a CHI 1000A potentiostat. Negative potentials (-0.6, -0.8, -1.0 and -1.2 

volts) were applied for a specific period of time (5, 10, 15, 20, 25 and 30 min) to produce four 

sets of Au-SiO2 nanocomposite films. As soon as electrodeposition was complete, the as-

prepared thin films were promptly removed from the electroplating solution and washed with 

deionized water three times and then slowly and gently dried to avoid cracking of the films for 

12 hrs. For comparison, electrodeposited planar gold films were obtained by following the same 

methodology but in the absence of the sol-gel monomer (TMOS) at -0.8 volts for 15 min.  
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 Fabrication of Coral-Like Nanostructured Porous Gold (NSPG) Thin Films   

Dissolution of silica in the as-prepared Au-SiO2 nanocomposite thin films was achieved 

by chemical etching in hydrofluoric acid (Caution: HF is an extremely hazardous and highly 

corrosive material. A fume hood, protective clothing, goggles and gloves must be used). The 

etching strategy consisted of four stages: wetting by immersing the films in deionized water for 5 

min followed by gentle etching in a 0.5 % HF solution for 5 min, additional etching in 2.5 % HF 

for 5 min to completely remove the silica, followed by washing with deionized water (2X) and 

drying in air.  

 Characterization  

The crystal structure and chemical composition of the etched and non-etched 

nanostructured porous films were examined by X-ray diffraction (XRD) on the powdered 

samples removed from the gold-coated substrates. Multiple films prepared under the same 

conditions were collected and used in the XRD measurements.  The XRD data was acquired at 

room temperature by X’Pert Philips Materials Research diffractometer with an operating voltage 

and current of 45 kV and 40 mA, respectively, using Cu Kα radiation (λ = 1.54060 Å) in θ-2θ 

geometry. Crystal phase identification was conducted using X’Pert Highscore Plus software, 

which utilized the ICDD/ JCPDS database. The surface morphology and bulk composition of the 

co-electrodeposited nanocomposite films were investigated before and after the etching process 

using a field-emission scanning electron microscope (FE-SEM, HITACHI SU-70) equipped with 

Energy dispersive X-ray spectroscopy (EDS).  In order to avoid charging effects, the non-etched 
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films were sputter coated with a thin layer of platinum prior to the SEM imaging. X-ray 

photoelectron spectroscopy (XPS) analysis was performed on a ThermoFisher ESCALAB 250 

imaging X-ray photoelectron spectrometer using monochromatic Al K (1486.68 eV) X-ray 

source equipped with a hemispherical analyzer. An internal flood gun (2 eV) and a low-energy 

Ar+ external flood gun were used for charge compensation during the data collection. The spectra 

were corrected using the C1s peak at 284.6 eV. For XPS data analysis and peak fitting, CasaXPS 

2.3.16 was used. The thickness and roughness of the Au-SiO2 nanocomposite and coral-like 

NSPG films was measured by a surface profilometer (Alpha-Step IQ Surface Profiler, KLA-

Tencor Co., San Jose, CA) from sharp edges on scratched films. The electrochemically active 

surface area of the coral-like NSPG electrodes was determined via cyclic voltammetry (CV) 

using a Ag/AgCl (1 M KCl) reference electrode and a Pt wire auxiliary electrode.  

3.3. Results and Discussion 

 Sol-Gel (Au-SiO2) Nanocomposite Films 

A graphical representation of the strategy used to fabricate Au-SiO2 nanocomposite films 

and the coral-like NSPG electrodes is shown in Figure 3.1. The fabrication strategy is a 

combination of sol-gel chemistry and electroassisted codeposition19 and is explained as follow:  
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Figure 3.1. Schematic illustration (not drawn to scale) of the fabrication of Au-SiO2 

nanocomposite films and coral-like nanostructured porous gold (NSPG) through the 

electroassisted deposition of silica from a partially hydrolyzed silica sol and the concurrent 

reduction of gold ions. Reprinted with permission from reference 1. Copyright 2014 American 

Chemical Society. 

 

hydrolysis of the sol-gel monomer (TMOS) takes place by stirring at 400 rpm using a digital 

magnetic stir plate for 50 min to produce the silica sol. The two-component electroplating 

solution was obtained upon addition of the gold precursor (KAuCl4) to the silica sol. The color of 

the solution turned yellow indicative of the formation of a gold/silica sol. Application of 

potentials in the range of -0.6 to -1.2 volts to the electrode surface increased the pH of the 

solution through the electrogeneration of OH− at the electrode/electrolyte interface from the 

reduction of oxygen and/or solvent (H2O in EtOH/H2O system).10 Previous work estimates the 

pH at the interface to be ~ 8.5.10, 12  
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2H2O + 2e− → 2OH− + H2 (g)                                                                                                           (3.1) 

O2 + 2H2O + 4e− → 4OH−                                                                                                                   (3.2)  

O2 + 2H2O + 2e− →  H2O2 +  2OH−                                                                                                  (3.3) 

The electrogenerated OH− catalyzes the polycondensation of the silica monomers and so 

the polymerization of the hydrolyzed sol-gel monomer takes place in the vicinity of the electrode 

surface leading to the deposition of silica.10-13 Concurrently, the gold ions were electrochemically 

reduced to form metallic gold.36 

AuCl4
− +  3e− →   Au0 + 4Cl−                                                                                                                (3.4) 

    As the co-electrochemical deposition proceeds, the color of the entire conductive 

substrate surface changes from golden yellow to brown and the degree of the brownish color 

increases as the reaction time grows. At more negative potentials, the color transformation 

occurs faster, and a similar effect has been observed at higher gold ion concentrations. Upon 

drying, the color of the Au-SiO2 nanocomposite film turns grey to white depending on the 

deposition conditions. The color changes observed during the thin film formation are indicative 

of the co-electrodeposition of Au-SiO2 nanocomposite films where an electrodeposited silica 

film is characterized by a white appearance.18 Upon removal of silica (see below), the film 

becomes brown consistent with the presence of gold. The coverage of the entire substrate surface 

with a continuous nanocomposite film implies that the gold deposition occurs through the porous 

structure of the hard template.  
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Figure 3.2 (a, b, c) depicts SEM images of a representative as-prepared Au-SiO2 

nanocomposite film formed at -0.8 volts for 15 min. The microstructure of the as-prepared Au-

SiO2 films is rough consisting of aggregates of colloidal particles/clusters that extended over the 

 

Figure 3.2. SEM images of the as-prepared Au-SiO2 nanocomposite films (a, b, and c) 

electrodeposited at -0.8 volts for 15 min from a solution containing KAuCl4 (5.29 mM) and 

TMOS (0.14 mM) and the coral-like NSPG (d, e and f) after etching in HF. The inset in (d) is a 

low magnification of SEM image of a crack-free NSPG film. Reprinted with permission from 

reference 1. Copyright 2014 American Chemical Society. 

 

entire surface of the conductive substrate. These aggregates are linked together to produce an 

interconnected three-dimensional porous framework. The morphological features displayed in 

the microstructure of the nanocomposites are similar to that of silica films prepared under base-

catalyzed polycondensation of the sol–gel monomers,10, 13, 18 15 metal foams,37 or a silica xerogel 

monolith.38-40  As a result, the Au-SiO2 nanocomposites are ‘porous’ like an electrodeposited sol-
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gel film10, 13, 15, 18 but unlike an electrodeposited gold film (which is rough, and not porous, as 

shown in Figure 3.3.  

 

Figure 3.3. SEM images of a planar gold film electrodeposited at -0.8 volts for 15 min in 

5.29 mM KAuCl4. Scale bars are 5 mm and 500 nm for (a) and (b), respectively. Reprinted with 

permission from reference 1. Copyright 2014 American Chemical Society. 

Changes in the applied potential and/or deposition time leads to distinct changes in the 

microstructure, thickness, and color of the electrodeposited nanocomposite. At more negative 

potentials and long deposition, the films are whiter in color consistent with a higher content of 

silica whereas at a very short deposition time (e.g., 5 min) the films are grey. The surface 

roughness and film thickness of the as-prepared nanocomposite films were further verified using 

surface profilometry. The collected surface profiles displayed in Figure 3.4 and Figure 3.5, are 

characterized by the presence of large spikes/oscillations indicative of a very rough surface, and 

further supporting the colloidal nature of the Au-SiO2 nanocomposite films evident in the SEM 
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images. The average height of the oscillations significantly increases as the applied potential 

becomes more negative, Figure 3.5. This is not unexpected because of the rapid increase in the 

production of hydroxide ions that leads to the formation of colloidal-like silica.10, 13, 18 The as-

prepared Au-SiO2 films are also relatively thick, ranging from 8 to 15 m depending on the 

applied potential and deposition time.  Concurrent with this increase in roughness and film 

sssssss  

 

Figure 3.4. Surface profiles of an as-prepared Au-SiO2 nanocomposite film and coral-

like NSPG obtained after etching in HF. Electrodeposition potential = -0.6 volts for 15 min. 

[KAuCl4] = 5.29 mM; [TMOS] = 0.14 M. The films were scratched to create sharp edges. The 

blue circles display the decrease in the surface roughness after etching in HF. Reprinted with 

permission from reference 1. Copyright 2014 American Chemical Society. 
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Figure 3.5. The average height of the oscillations (surface roughness indicator) recorded 

from the surface profiles acquired on Au-SiO2 nanocomposite films electrodeposited at different 

potentials for 15 min. Inset is a surface profile of an as-prepared Au-SiO2 nanocomposite film at 

-0.8 volts for 15 min and after etching (NSPG). [KAuCl4] = 5.29 mM; [TMOS] = 0.14 M. 

Reprinted with permission from reference 1. Copyright 2014 American Chemical Society. 

 thickness is an  increase in the amount of silica (Si and O) relative to Au as reported by SEM-

EDX, Figure 3.6, upon application of an increasing negative potential and/or deposition time. 
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Figure 3.6. Composition of the as-prepared Au-SiO2 nanocomposite films (solid lines) 

and coral-like NSPG (dashed line, open points) at (a) different deposition potentials (-0.6, -0.8, -

1.0 and -1.2 volts) for 15 min and (b) different deposition times (05, 10, 15, 20, 25 and 30 min) 

at -0.8 volts. [KAuCl4] = 5.29 mM; [TMOS] = 0.14 M. A small amount (<1 wt%) of potassium 

originating from the supporting electrolyte was observed in some of the Au-SiO2 nanocomposite 

films. Reprinted with permission from reference 1. Copyright 2014 American Chemical Society. 
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The colloidal nature, roughness, large thickness and composition of the nanocomposite 

films can be interpreted based on differences in the mechanism and kinetics for the reduction of 

metal ions and the polycondensation of silica monomers via electrochemical formation of OH−.19   

Upon the application of a sufficiently negative potential, gold ions will be directly reduced at the 

electrode surface whereas silica polymerization will take place at and beyond the electrode 

surface as the electrogenerated  OH− begins to diffuse into the bulk of solution encountering 

silica monomers. Depending on the magnitude of the applied potential and the deposition time, 

very different nanocomposites are formed, ultimately leading to nanostructured porous gold with 

different porous frameworks (see below).   

Generally, in a metal/silica sol system the reduction of the solvent (e.g. H2O in 

EtOH/H2O mixture) to form  OH− occurs at a more negative potential with respect to metal ions 

reduction.19 At relatively low potentials (e.g., -0.6 volts), sol-gel polymerization will be slow due 

to the limited production of hydroxide ions. Gold ions, however, will be easily reduced at the 

electrode surface. As the reaction time proceeds (e.g. 15 min), the concentration of gold ions at 

the electrode surface will drop as depletion sets in while the electrogenerated base catalyst will 

increase as it continues to diffuse beyond the electrode surface into the bulk of the solution 

leading to an increase in sol-gel monomer polycondensation and the generation and growth of 

colloidal silica. Eventually the silica will aggregate and deposit when the critical concentration 

fulfills. The net result will be the formation of gold-rich nanocomposite films at the early stages 

of the electrochemical deposition reaction and a more silica-rich film at longer deposition times.  
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Contemporaneously, the gold deposition will continue to occur through the pores of the 

nanocomposite microstructure but at a slower rate due to the partial blockage of the electrode 

surface by non-conductive silica aggregates resulting in the formation of a very rough and thick 

particulate-like silica-rich nanocomposite at longer deposition periods. The observed differences 

in film composition, thickness and roughness as the applied potential became more negative can 

also be attributed to differences in the nucleation and growth rates of electrochemically deposited 

nanocomposite films. The rate of the water/oxygen reduction to OH− will increase as the applied 

potential becomes more negative while the diffusion-controlled reduction of the gold ions will 

decrease as depletion sets in. The net result after a 15 min deposition time is a silica-rich surface.  

Such behavior has been noted in co-electrodeposited Cu-SiO2 and Au nanoparticle-SiO2 

nanocomposites.19, 21 

The silica and gold precursors act synergistically in that without both being present in 

solution at the same time and concurrently deposited, an Au-SiO2 nanocomposite would not be 

formed. Successive (in contrast to co-) electrodeposition of silica first followed by gold would be 

challenging without the use of some type of ‘nanoglue” to improve the adhesion of silica to 

gold.41, 42 Likewise, gold electrodeposition followed by silica electrodeposition would not yield a 

Au-SiO2 nanocomposite film. The high stability of the dry Au-SiO2 nanocomposite films ( > 6 

months at ambient conditions) and the good adhesion to the conductive substrate surface is 

attributed to the presence of the gold corals, which work as a “backbone” supporting the 

nanocomposite microstructure. The as-prepared nanocomposite films are visually crack-free.  
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However, films prepared at long deposition times (≥ 30 min) and/or large negative potentials (≤ -

1.2 volts) may crack and/or partially flake off when quickly dried or placed under vacuum.   

 Nanostructured Porous Gold (NSPG) Films 

The Au-SiO2 nanocomposite films can be used as a building block to form a porous 

nanostructured gold electrode by simply chemically etching the silica in hydrofluoric acid (HF). 

In this experiment, the co-electrodeposited Au-SiO2 films were immersed in diluted hydrofluoric 

acid using a gentle two-step etching procedure outlined in the experimental section. The resulting 

porous gold films were brownish in color and adhered well to the conducting substrate.  

SEMs of an etched film at different magnifications are shown in Figure 3.2 (d, e, f). As 

can be seen, the morphology of the as-prepared Au-SiO2 nanocomposite films drastically 

changed after the etching process. Chemical etching resulted in the formation of coral-like NSPG 

films characterized by a much more open framework with respect to the Au-SiO2 nanocomposite 

films. The low magnification SEM image shows that the NSPG films are crack-free (inset of 

Figure 3.2 (d)). The circular-like pores in the Au-SiO2 composite films were replaced by pores 

of irregular shape resulting from the cross-linkage of the gold corals. Both the thickness and 

roughness of the nanocomposite films also decreased significantly after the etching process as 

depicted in Figure 3.4. At -1.0 volts, for example, the film thickness decreased from ~12 m to 

550 nm after etching. The thickness of the nanocomposite films prepared at different deposition 

potentials was reduced by almost the same magnitude with the NSPG films being ~ 22 times 

thinner than the corresponding AuSiO2 nanocomposite films. Since the surface of the composite 
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films is predominately colloidal silica (see below), the significant decrease in film thickness and 

roughness is attributed to the removal of the silica over-layer. As can be seen in an SEM image 

acquired on an edge of a scratched NSPG, the nanostructure is continuous from the bottom (at 

the underlying gold substrate) to the top, Figure 3.7. SEM-EDX acquired over an area of 100 

m2 confirmed the removal of silica, Figure 3.8.  

 

Figure 3.7. SEM image of a scratched NSPG prepared from an Au-SiO2 nanocomposite 

film electrodeposited at -0.8 volts for 15 min from a solution containing 5.29 mM KAuCl4 and 

0.54 M TMOS. The image reflects the continuous formation of the gold corals at the conductive 

substrate surface (dark area). Reprinted with permission from reference 1. Copyright 2014 

American Chemical Society. 

The chemical nature and electronic structure of the as-prepared Au-SiO2 nanocomposite 

and NSPG films were examined in more detail using XPS and powder XRD.  Figure 3.9 shows 



www.manaraa.com

96 
 

a representative Au 4f and Si 2p high-resolution core-level spectra for the Au-SiO2 

nanocomposite films before and after etching. The Au 4f spectrum consists of two peaks due to 

the spin orbit coupling of gold, with a separation of 3.7 eV.43  The Si 2p peak at 103.5 eV with a 

FWHM of 2.3 eV is consistent with SiIV such as SiO2 (103.9 eV) or a suboxide (~ 102 eV).44   

Before etching (Figure 3.9 (a)), the Au peaks are very small and the Si peaks are very large 

indicating that the Si is on the outermost surface of Au.  After etching in HF, the Si 2p 

photoelectron peak corresponding to the presence of silica is absent (Figure 3.9 (b)) as is the O 

1s peak, further proving the effectiveness of the etching protocol in silica removal. 

Upon close examination of the Au 4f  high resolution spectra before and after etching, a 

broadening and shift (≥ 1.0 eV) to higher binding energy values for the Au-SiO2 nanocomposite 

relative to metallic gold can be observed (Figure 3.9 (a)). However, they have the same peak 

separation of 3.7 eV.  Before etching (Au-SiO2 nanocomposite), two photoelectron peaks of Au 

4f7/2 at 84.5 eV (FWHM = 2.4 eV) and Au 4f5/2 at 88.2 eV (FWHM = 2.7 eV) are observed.  

After etching, the two photoelectron peaks shifted to 83.7 (FWHM= 0.76) and 87.4 eV (FWHM 

= 0.78), which are in accordance with the reported literature values for metallic gold.45, 46 The 

positive shift in the binding energies of the Au 4f  photoelectron peaks could arise from a number 

of factors including differential charging47-49 and the presence of a trace amount of gold in a 

different oxidation state originating from the plating solution, for example. The broadening of 

the Au 4f peaks in the nanocomposite film with respect to the NSPG may be attributed to 

interactions between gold and silica in the nanocomposite film.50 
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Figure 3.8. EDX spectra of (a) electrodeposited (ED) planar gold film (b) coral-like 

NSPG and (c) Au-SiO2 nanocomposite film  electrodeposited at -0.8 volts for 15 min in 5.29 mM 

KAuCl4 and 0.14 M TMOS (b, c only). Reprinted with permission from reference 1. Copyright 

2014 American Chemical Society. 
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Figure 3.9. XPS spectra of (a) the Au 4f core-level and (b) Si 2p core-level from the Au-

SiO2 nanocomposite films electrodeposited at -0.8 volts for 15 min and coral-like NSPG 

obtained after the 2-step etching in HF. [KAuCl4] = 5.29 mM; [TMOS] = 0.14 mM. Reprinted 

with permission from reference 1. Copyright 2014 American Chemical Society. 



www.manaraa.com

99 
 

X-ray diffraction patterns of the as-prepared Au-SiO2 nanocomposite thin films before 

and after the etching process are displayed in Figure 3.10. XRD pattern of the non-etched film 

displayed two different sets of diffraction peaks. The first set consisted of five diffraction peaks 

which can be indexed to the diffraction from the (111), (200), (220), (311), and (222) planes of 

cubic metallic gold with FCC structure (JCPDS, card no. 03-065-8601). The second set was 

represented by two diffraction peaks located at 22.38o and 28.29o corresponding to the (100) and 

(101) planes of hexagonal silicon oxide (JCPDS card no. 01-070-3315), respectively. The 

appearance of the gold and silica diffraction peaks in the XRD pattern of the non-etched film 

confirmed the formation of a mixed phase gold-silica nanocomposite films. 

The disappearance of the characteristic silica peaks in the XRD pattern of the etched 

sample is again consistent with the removal of silica as indicated by SEM-EDX and XPS. The 

significant increase in the intensity of the (111) peak and the large decrease in the intensities of 

the (200), (220), and (311) peaks could be attributed to the oriented rearrangement of the gold 

atoms in the (111) direction after the selective dissolution of silica. Furthermore, in the face 

centered cubic structure of nanoporous gold the (111) and (222) planes are parallel to each other 

and this could explained the observed increase in the intensity of (222) peak.51 However, the 

differences in magnitudes of the intensity increase between the (111) and (222) peaks might be 

attributed to the differences in the d-spacing values where at higher 2-theta degree values the d-

spacing decreases.52   
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Figure 3.10. Powdered XRD patterns of as-prepared Au-SiO2 and the coral-like NSPG 

obtained via electrodeposition at -0.8 volts for 15 min from a solution containing 5.29 mM 

KAuCl4 and 0.14 mM TMOS. Reprinted with permission from reference 1. Copyright 2014 

American Chemical Society. 

An important characteristic of any porous gold electrode is its surface area.29 The 

electrochemically active surface area or the so-called real surface area of the coral-like NSPG 

electrode was determined by cyclic voltammetry in 0.5 M H2SO4 by integrating the area 

underneath the cathodic peak at ~0.8 volts and assuming a specific charge of 400 C cm-2 for the 

reduction of the gold oxide monolayer.53-56 A typical cyclic voltammogram (CV) characteristic 

of gold in an acidic solution is shown in Figure 3.11. As can be seen, the stripping peak at ~0.8 

volts in the CV of the coral-like NSPG electrodes is significantly larger than that observed at an 

electrodeposited planar gold electrode, Figure 3.11 (a).  For an electrode prepared at -0.8 volts,  
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Figure 3.11. Cyclic voltammograms of NSPG electrodes (solid lines) in 0.5 M H2SO4 at 

a scan rate of 10 mV/s. The NSPG electrodes were obtained by etching Au-SiO2 nanocomposite 

films electrodeposited at (a) different deposition potentials and (b) different deposition times.  

The dashed line in (a) was obtained at a planar gold electrode electrodeposited at -0.8 volts for 

15 min. Reprinted with permission from reference 1. Copyright 2014 American Chemical 

Society. 
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the surface area was 1.63 cm2; the geometric area is 0.079 cm2.   Given a film thickness of ~ 520 

nm, the surface area per unit volume is ~ 4 x 107 m2/m3
.  The roughness factor (RF), defined as 

the ratio of the real surface area (RSA) to the geometrical surface area (GSA), RF = RSA/GSA, 

was 20.6.  The values of RF (see below) compare well with other routes for the formation of high 

surface area gold that include dealloying gold leaf in concentrated nitric acid,29, 57 dealloying a 

Au-Zn alloy electrochemically,54 surface rebuilding,58 and roughening in HCl.56 

 Nanostructured Porous Gold (NSPG) Films:  Morphology Control 

An important characteristic of any new method for the fabrication of high surface area 

electrodes is the ability to control electrode morphology, surface area, and film thickness.  In this 

work, we demonstrate morphological control by tailoring the deposition parameters, such as the 

potential, time, sol-gel monomer concentration, and gold ion concentration. 

 Deposition Potential and Time   

Figure 3.12 and Figure 3.13 displays the SEM micrographs of the coral-like NSPG films 

obtained at different deposition potentials (-0.6, -1.0 and -1.2 volts) and times (5, 10, 20, 25, and 

30 min), respectively. For all samples the KAuCl4 and sol-gel monomer (TMOS) concentrations 

were kept constant at 5.29 mM and 0.14 mM, respectively.  As can be seen, the morphology of 

the film and the thickness of the coral branches/ligaments are strongly dependent on the value of 

the applied potential and the deposition time. 
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Figure 3.12. SEM images of coral-like NSPG prepared from Au-SiO2 nanocomposite 

films electrodeposited at -0.6, -1.0 and -1.2 volts for 15 min. [KAuCl4] = 5.29 mM; [TMOS] = 

0.14 M.   The white and yellow circles indicate relatively low density gold agglomerates and 

higher density gold agglomerates, respectively. Reprinted with permission from reference 1. 

Copyright 2014 American Chemical Society. 



www.manaraa.com

104 
 

 

Figure 3.13. SEM images of coral-like NSPG prepared from Au-SiO2 nanocomposite 

films electrodeposited at -0.8 volts for different deposition times. [KAuCl4] = 5.29 mM; [TMOS] 

= 0.14 mM. The white and yellow circles indicate relatively low density gold agglomerates and 

higher density gold agglomerates, respectively. Reprinted with permission from reference 1. 

Copyright 2014 American Chemical Society. 
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In the low magnification SEM images shown in Figure 3.12 and Figure 3.13, two coral-like 

gold structures are evident and indicated by the yellow circles:  high density agglomerates and 

low density agglomerates. Upon application of sufficiently negative potentials, a large number of 

nucleation sites at which the gold grew to produce gold-rich areas surrounded by silica-rich areas 

were produced.  Upon chemical etching, high density and low density coral gold agglomerates 

were generated.   From the high magnification images, it can be seen that as the applied potential 

becomes more negative and/or deposition time increases, the overall size of the agglomerates 

increases and the width of the individual fingers that make up the coral branches increases.  

The increase in the reaction time/ negative potentials was accompanied by not only a 

continuous growth of gold but also an increase in the degree of cross-linkage of the gold coral 

branches, resulting in the formation of thick porous films (Figure 3.12 and Figure 3.13). In 

Figure 3.14, the variation in film thickness and the roughness factor with potential and time can 

be seen. A near linear increase in film thickness and roughness factor as the applied potential 

becomes more negative or the deposition time increases was evident.  An increase in RF up to 31 

times has been achieved at an applied potential of -1.2 volts. The dependence of surface area per 

unit volume on potential and time is shown in Figure 3.15. In these plots, the real surface area 

was normalized to the volume of the film defined by the geometric area and average film 

thickness.  With the exception of short deposition times (≤ 5 min), the values obtained are nearly 

constant giving rise to an average value of 4.4 x 107 m2/m3. The porosity of the coral-like NSPG 

films coupled with the higher degree of cross-linkage and increased thickness at longer 
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deposition times helps to explain the observed increase in the real surface area and roughness 

factor of the NSPG electrodes. Roughness factors in the range of 5-38 were obtained reflecting 

the large increase in the electrode surface area as the deposition potential increased. 

 

Figure 3.14. Thickness and the roughness factors (RF) of NSPG prepared from Au-SiO2 

nanocomposite films electrodeposited (a) for 15 min at different deposition potentials and (b) at -

0.8 volts for different deposition times. [KAuCl4] = 5.29 mM; [TMOS] = 0.14 mM. Reprinted 

with permission from reference 1. Copyright 2014 American Chemical Society. 
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Figure 3.15. Variation in normalized surface area of NSPG electrodes with potential (a) 

and time (b). Reprinted with permission from reference 1. Copyright 2014 American Chemical 

Society. 

 Precursor concentration  

The morphology of the NSPG electrodes was also highly dependent on the concentration of gold 

ions in the deposition solution (Figure 3.16) and the concentration of TMOS (Figure 3.17).  As 

depicted in the low resolution SEM images in Figure 3.16, an increase in the concentration of  
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Figure 3.16. SEM images of coral-like NSPG prepared from Au-SiO2 nanocomposite 

films electrodeposited at -0.8 volts for 15 min from solutions containing 0.14 mM TMOS and 

different concentrations of gold ions. The white and yellow circles indicate relatively low density 

gold agglomerates and higher density gold agglomerates, respectively. Reprinted with 

permission from reference 1. Copyright 2014 American Chemical Society. 

HAuCl4 was accompanied by an increase in the size of the gold agglomerates due to the 

diffusion-controlled deposition of gold. From high resolution SEM images, it can be seen that the 

density, size and degree of cross-linkage within the coral-shaped colonies increased with an 

increase of gold ion concentration (Figure 3.16). In addition to a change in morphology, an 
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increase in HAuCl4 also leads to an increased film thickness, Figure 3.18 (a). The average 

thickness of the NSPG electrodes ranged from 0.22 to 2.25 m.  Likewise, a significant increase 

in the surface area of the as-prepared coral-like NSPG electrode was noted.  Through adjustment 

of [HAuCl4], up to 57 times increase in the real surface area over the geometric area was 

achieved. 

 

Figure 3.17. SEM images of coral-like NSPG prepared from Au-SiO2 nanocomposite 

films electrodeposited at -0.8 volts for 15 min from solutions containing 5.29 mM KAuCl4 and 

different concentrations of TMOS. The white and yellow circles indicate relatively low density 

gold agglomerates and higher density gold agglomerates, respectively. Reprinted with 

permission from reference 1. Copyright 2014 American Chemical Society. 
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The concentration of sol-gel monomer (TMOS) in the electroplating solution also had a 

significant effect on the morphology, thickness, and surface area of coral-like NSPG.  From low 

magnification SEM images in Figure 3.17, it can be seen that at low TMOS concentration, the 

NSPG films are made up of a high density well-packed gold agglomerates.  As the concentration 

of TMOS was increased by a factor of ~4, the number of these gold agglomerates decreased 

significantly and increased in size, Figure 3.17 (a) vs (d). 

 

Figure 3.18. Thickness and the roughness factors (RF) of NSPG prepared from Au-SiO2 

nanocomposite films electrodeposited at -0.8 volts for 15 min as a function of (a) gold ions 

concentration (2.65, 5.29, 10.6, 15.9, and 21.2 mM), and (b) sol-gel monomer concentration 

(0.07, 0.14, 0.27, and 0.54 mM). Reprinted with permission from reference 1. Copyright 2014 

American Chemical Society. 
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Figure 3.18 shows the correlation in film thickness and roughness factor with the 

concentration ratio of gold salt to sol-gel monomer. Based on the study of the different 

deposition parameters mentioned above, it was expected that an increase in the concentration of 

TMOS will result in an increase in silica deposition at the expense of gold ion reduction and thus 

lead to a decrease in the film thickness of NSPG. However, an unexpected slight increase in film 

thickness was observed as the concentration of TMOS increased from 0.07 to 0.14 mM (or a 

when the ratio of [AuCl4
-]/[TMOS] decreased from 75 to 38) followed by the expected decrease 

when the concentration of TMOS was further increased to 0.54 mM, Figure 3.18 (b). These 

findings imply that there is a critical sol-gel monomer concentration (CSGC) at which the 

electrodeposited silica around the gold coral will be able to stabilize the coral-like gold structures 

and suppress the aggregation of the deposited gold. For Au-SiO2 system studied herein, the 

CSGC concentration is ~ 0.14 mM. Above the CSGC, the coral-like gold nanostructures should 

be stable while below the CSGC the coral-like gold nanostructures are unstable and subject to 

aggregation as indicted by the yellow circles in Figure 3.17 (a-c). The electrochemically active 

surface area and the roughness factor measurements support the assumption of CSGC where they 

decreased below and above the CSGC as shown in Figure 3.18 (b). The observed decrease in the 

surface area and roughness factor below the CSGC could be attributed to the decrease in the film 

thickness and the aggregation of the deposited gold. The decrease in the kinetics of the gold 

deposition and film thickness above the CSGC might account for the observed decrease in the 

surface area of the electrodes.  
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 Reproducibility 

To examine the reproducibility of the introduced strategy for the fabrication of NSPG 

electrodes, four different samples were selected in order to represent the different parameters 

affecting the deposition process. The preparation of each sample was repeated 3 times on the 

same day and the roughness factor was measured in each case. The mean and the standard 

deviation of the roughness factor measurements were calculated and plotted as a function of the 

deposition parameters as displayed in Figure 3.19. The obtained data reflected a high degree of 

reproducibility. 

 

Figure 3.19. Reproducibility of the method at different deposition parameters.  The error 

bars signify ±1σ. N = 3. Reprinted with permission from reference 1. Copyright 2014 American 

Chemical Society. 
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3.4. Conclusion  

Porous Au-SiO2 nanocomposites and corresponding coral-like nanostructured gold 

electrodes have been successfully prepared via the co-electrodeposition of KAuCl4 and TMOS 

on a conducting substrate. Application of a sufficiently negative potential leads to the 

simultaneous reduction of gold ions and the formation of hydroxide ions, which subsequently 

catalyzes the condensation of TMOS derived monomers. The as-prepared Au-SiO2 

nanocomposite films are colloidal in nature with an open porous framework and good stability. 

Immersing the Au-SiO2 composite films in a diluted hydrofluoric acid solution leads to the 

selective dissolution of silica and the evolution of coral-like NSPG. The nanostructured porous 

gold films are stable and displayed high electrochemically active surface areas (RF up to 57) and 

thus are excellent candidates for applications requiring high surface area conductive supports, 

particularly in catalysis and chemical sensing.  The electrochemical gold/sol gel composite route 

for the formation of porous gold electrodes has several distinguishing features that include good 

reproducibility, low cost via the use of very dilute gold ion solutions, utilization of 

environmentally friendly solvents (H2O and C2H5OH), and does not require expensive 

equipment, vacuum, or toxic gold cyanide electrolytes.  As a result, the electrochemical gold/sol-

gel composite strategy for fabricating nanoporous gold is a promising candidate for a large scale 

production. Generalization of the method to produce other nanoporous metals is currently 

underway.     
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4.1. Introduction 

This work has been submitted to Langmuir.1 Conducting polymers have fascinated 

scientists due to their important properties and potential technological applications in energy 

storage, electrocatalysis, and chemical sensing, as well as in the fabrication of flexible 

electronics, supercapacitors, batteries, etc.2-6 However, reduced mechanical properties, stability 

and processability of the conductive polymer materials have often limited such applications. 

Doping the conductive polymer material with inorganic components through the formation of 

organic–inorganic hybrid composites has been an appealing route to overcome these problems.7-

12 Silica is a potential candidate as the inorganic component in such hybrid composites due to its 

improved mechanical strength, chemical and thermal stability, tunable structure and ease of 

preparation.13-15 Indeed, many studies aimed toward the preparation of silica-polymer core-shell 

particles, silica-polymer nanofibers, polymer-silica films and coatings, and other composite 

materials have been reported in the literature.16-25  

Polymer-silica nanocomposites can be prepared in a number of different ways as 

described in various reviews.9, 20, 25 Conducting polymers as well as silica xerogels can be 

prepared chemically via addition of an oxidizing agent or condensation catalyst, respectively.13-

15, 26-29 Alternatively, they can be prepared electrochemically via direct oxidation of monomers5 

or electrogeneration of the condensation catalyst, respectively.30-37 The advantage that an 

electrochemical method provides is the ability to control and fine-tune the film thickness and 

nanoscale morphology of the composite material by simply varying the applied potential.36, 37  

However, the simultaneous electrochemical formation of the polymer and the silica network at or 

near the same point in time to form a homogeneous nanocomposite film has proved elusive.  

This is due in part because polymer films are electrochemically deposited anodically through 

application of a sufficiently large positive potential while silicate films are electrochemically 

deposited cathodically through application of a large enough negative potential.   
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In recent work by Mandler and coworkers, polymer-silica nanocomposite films were 

prepared via application of alternating potentials.19  Polypyrrole was deposited upon application 

of an anodic potential pulse while silica was deposited during the cathodic pulse. A composite 

film was thus produced, with the morphology and extent of homogeneity of the deposits 

dependent on the applied potentials, the order of their application, deposition time and electrode 

material.19 Ideally, it would be advantageous to be able to co-electrodeposit the polymer and the 

silica via a single-potential-step. Not only would this greatly simplify the fabrication of polymer-

silica nanocomposites but it would likely improve the homogeneity of the deposit since the silica 

and polymer will be simultaneously produced.  Morphology and film thickness can be tuned via 

changes in the potential applied to the electrode surface. 

To be able to form the polymer-silica nanocomposite in a single-potential-step, e.g., 

cathodically, it will be necessary to generate an oxidizing agent electrochemically via application 

of sufficiently reductive potentials.  In recent work, however, Choi and co-workers.38 

demonstrated the ability to form a conducting polymer, e.g., polypyrrole cathodically by 

coupling the electrogeneration of the nitrosonium ion (NO+), as an oxidizing agent with the 

oxidative polymerization of the pyrrole monomers. NO+ ions were generated through the 

electrochemical reduction of NO3
- ions in a strongly acidic environment. A particulate-like 

polypyrrole thin film was then cathodically deposited on a copper substrate by the interaction of 

the electrogenerated oxidizing agent NO+ ions and pyrrole monomers at the electrode surface.38 

The applied cathodic potential required to initiate these chemical reactions is similar to that 

required to produce the sol-gel based catalyst (OH-), therefore we hypothesized that it may 

actually be feasible to prepare homogeneous polymer-silica composite films with a single-

potential-step.  

Herein, we demonstrate the fabrication of polypyrrole-silica (Ppy-SiO2) and polypyrrole-

silica-metal (Ppy-SiO2-M) hybrid nanocomposite films on oxidizable (Ag) and non-oxidizable 

(Au) substrates using a one-step single-potential cathodic deposition process for the first time. 

The mechanism of the electropolymerization process under cathodic conditions is different from 
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that occurring under anodic potentials, which allows for the formation of new structures and 

morphologies and provides new avenues for material synthesis that cannot be achieved using 

conventional anodic methods including the formation of free-standing films. By controlling the 

reaction parameters, the morphology of the resulting nanostructured hybrid films can be fine-

tuned from particulate-like to wire-like. A novel growth mechanism of Ppy-SiO2 nanocomposite 

films is proposed based on understanding the relation between two competing redox reactions, 

OH- and NO+ electrogenerations, which take place simultaneously at the electrode surface, and 

the resultant morphology of the electrodeposited Ppy-based materials.  

 

4.2. Experimental Section  

4.2.1. Reagents and Materials 

Pyrrole (99%, extra pure) and tetramethoxysilane (TMOS, 99%) were purchased from 

Acros Organics.  Silver nitrate (AgNO3, 99.9995% (metals basis), Premion) and sodium nitrate 

(NaNO3, 98+%) were obtained from Alfa Aesar. The hydrofluoric acid (HF, 48-50%), and nitric 

acid (HNO3, 69.3%), were obtained from Fisher Scientific (CAUTION: these acids are highly 

corrosive and must be handled with extreme caution in a fume hood. Gloves, protective clothing, 

and safety glasses must be used). Potassium ferricyanide K3[Fe(CN)6] was purchased from 

Sigma-Aldrich. All the electrodeposition solutions were prepared using ultrapure type-I water 

(Millipore Milli-Q purification system, 18.2 MΩ.cm at 25 °C) and 200 proof ethyl alcohol 

(CH3CH2OH, ACS/USP grade, Pharmco-AAPER). Chemicals were used as received without any 

further purification. A 100 nm-thick gold-coated glass slides with a 5 nm-thick adhesive layer 

of titanium were purchased from EMF, Ithaca NY.  

 

 

http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_11008441__-1_0
http://www.fishersci.com/ecomm/servlet/fsproductdetail_10652_11008441__-1_0
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4.2.2. Co-electrodeposition of Polypyrrole-Silica-Silver (Ppy-SiO2-Ag@Au) and 

Polypyrrole-Silica (Ppy-SiO2@Ag) Hybrid Nanocomposite Films on Gold and Silver 

Substrates, Respectively  

The gold electrodes (1 cm x 2.5 cm) were cleaned by successive sonication in soap, water, 

ethanol and water, each for 10 min followed by drying under nitrogen stream. The electrodes 

were then plasma cleaned (PE2000 RF Plasma Etcher, South Bay Technology) at 30 W, DC bias 

of -400 V and 140 mtorr in oxygen for 5 minutes. The electrodeposition solution was prepared as 

follow: first, the silica sol was obtained by a continuous stirring of 1250 L of 1.6 M NaNO3, 

1120 L of H2O, 180 L of HNO3 (69.3%), 400 L of TMOS,  and 6.05 mL of EtOH for 8 h at 

800 rpm using a digital stir plate. Then 20 mg of AgNO3 were added to the hydrolyzed silica sol 

and stirred for 15 min. After that, 200 L of pyrrole were injected into the silver-silica sol and 

stirred for 2 min to produce a transparent electrodeposition solution with a pH of 1.4. For the 

preparation of Ppy-SiO2-Ag@Au (sample A), the as-prepared electrodeposition solution was 

transferred into a conventional three-electrode electrochemical cell housing a silver chloride-

coated silver wire in 1.0 M KCl (Ag/AgCl/1.0M KCl) reference electrode, a polypyrrole pre-

coated platinum wire as a counter electrode and a gold slide as the working electrode. A ¼ in 

circle in a piece of tape (UHMW polyethylene tape, CS Hyde) defines the electrode area to be 

0.32 cm2. The co-electrodeposition experiment was carried out at room temperature under an 

amperometric mode using an applied potential of -1.0 volts without stirring and controlled by a 

CHI-1000A potentiostat. Deposition took place for 30 min to produce a dark-navy-blue 

nanocomposite thin film (Ppy-SiO2-Ag@Au). The electrode was removed from the 

electrodeposition solution while the potential was still applied to avoid further deposition of 

silica, possible over-oxidation of polypyrrole by the electrogenerated nitrosyl ions or dissolution 

of Ag nanoparticles by HNO3. The Ppy-SiO2-Ag@Au thin film was carefully rinsed with 

deionized water and kept in a moisture-rich environment (e.g. desiccator bottom filled with hot 

water) for at least a week to slowly dry before further treatment. (CAUTION: drying the as-

prepared nanocomposite thin film in air and/ or not keeping it for enough time in the moisture-
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rich environment will lead to its destruction in the subsequent treatments). The properly dried 

Ppy-SiO2-Ag@Au nanostructured thin films were air-stable (no cracks nor peeling from the 

substrate was observed) for more than 8 months. For the preparation of Ppy-SiO2@Ag 

nanocomposite thin film (sample B), the same methodology was used but AgNO3 was absent in 

the deposition solution and a silver-coated gold substrate was used. The silver-coated gold 

substrate was obtained by depositing silver from a 7 mM AgNO3 in 0.1 M HNO3 plating solution 

on a clean gold electrode at -0.6 volts for 500 sec. For comparison, a Ppy thin film was deposited 

under anodic potential of +1.0 volts for 400 sec from the same electrodeposition solution but in 

absence of the silane monomer (TMOS) and AgNO3. The kinetics of the electrodeposition 

reaction were investigated by carrying out the Ppy-SiO2-Ag@Au electrodeposition at -1.0 volts 

for 1, 2 and 4 min. In addition, the effect of the applied potential (-0.6 and -0.8 volts) was also 

investigated. 

To confirm that electropolymerization of pyrrole monomers was induced only by the in 

situ electrochemically generated nitrosonium ions, several electrodeposition solutions were 

allowed to age for 30 min in closed glass vials without applying any potential and the color of 

the electrodeposition solution was monitored. No change in color was observed. To investigate 

the reaction mechanism, five sets of control experiments were performed in addition to the 

above-mentioned time- and potential-based control experiments. Electrodeposition of Ppy-SiO2-

Ag@Au was repeated under the following conditions (a) absence of the silane monomer 

(TMOS), (b) low sodium nitrate concentration of 0.08 M, (c) low pH obtained by increasing the 

HNO3 concentration to 1.0 M, (d) low pyrrole monomer concertation of 0.08 M, (e) absence of 

ethanol in a pure aqueous environment.  

4.2.3. Fabrication of Free-Standing and Transferable Polypyrrole Thin Films  

A new multistep etching strategy for the dissolution of silica or silver from the 

nanocomposite hybrid thin films was developed and named localized drop-cast dealloying 

(LDCD) (Figure 4.1). Typically, LDCD was carried out as follow: the nanocomposite film was 
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completely covered with 3-5 drops of 3.0% HF and allowed to incubate for 10 min. During the 

incubation time, the film released from the electrode surface and the used HF carefully and 

safely discarded using a disposable pipet to allow the released film to re-settle on the substrate as 

displayed in Figure 4.1 (d). To completely etch the silica, the released film was carefully 

transferred into a Teflon beaker filled with 5.0% HF (the HF level should be 1-2 cm above the 

film surface) and allowed to settle for 10 min. The free-standing film on a gold slide was 

transferred into a deep plastic dish filled with deionized water and allowed it to sit 10 min, 

Figure 4.1 (e). This step was repeated two times. The free-standing film was transferred to a 

suitable substrate (e.g. gold, glass, stainless steel, ITO, etc., (Figure 4.1 (f)) and dried in a 

moisture-rich environment for at least two days before characterization or further treatment. To 

remove the silver particles from the nanocomposite thin films or to dissolve the underlying silver 

substrate by LDCD, the nanocomposite thin films were first covered with few drops of 2% 

HNO3 for 30 min followed by full immersion in 1:1 HNO3 for 30 min.  They were then 

immersed twice in deionized water for 10 min and transferred into a moisture-rich environment 

for at least two days. Application of the LDCD technique to Ppy-SiO2-Ag@Au and Ppy-

SiO2@Ag nanocomposite films resulted in the fabrication of several free-standing 

nanostructured thin films listed in Table 4.1. The resulting free-standing thin films stored in 

moisture-rich environments are stable for more than 8 months.  
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Figure 4.1. Fabrication of free-standing and transferable polypyrrole-based thin films by 

the localized drop-cast dealloying (LDCD) technique (a-e). Loading the free-standing film on 

ITO electrode and weighting paper (f).  
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Table 4.1. Polypyrrole and polypyrrole hybrid nanocomposite thin films. 

Number Sample Chemical composition Preparation Mounting nature 

1 Ppy-SiO2-Ag@Au Polypyrrole-silica-silver Electrodeposition, main sample A Deposited on gold substrate 

2 Ppy-SiO2@Ag Polypyrrole-silica Electrodeposition, main sample B Deposited on silver substrate 

3 Ppy-Ag Polypyrrole-silver Treating sample A with HF Free-standing film 

4 Ppy Polypyrrole Treating sample A with HF and HNO3 successively Free-standing film 

5 Ppy Polypyrrole Treating sample B with HF Free-standing film 

6 Ppy Polypyrrole Treating sample B with HF and HNO3 successively Free-standing film 

7 Ppy-SiO2 Polypyrrole-silica Treating sample B with HNO3 Free-standing film 

8 Ppy Polypyrrole Treating sample B with HNO3 and HF successively 

 

Free-standing film 
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4.2.4. Characterization 

  The morphological aspects and chemical composition of the electrodeposited and free-

standing films were examined by field emission scanning electron microscopes (FE-SEM, 

HITACHI SU-70 and HITACHI S4300) equipped with energy dispersive X-ray spectrometer 

(EDX). Film thickness was measured using a surface profilometer (Alpha-Step IQ Surface 

Profiler, KLA-Tencor Co., San Jose, CA) on samples captured on glass or gold-coated glass 

slides. X-ray diffraction (XRD) patterns were recorded at room temperature in θ-2θ geometry by 

a PANalytical X’Pert Pro MPD series diffractometer equipped with a Pixcel detector and Cu Kα 

radiation (λ = 1.54060 Å) at an operating voltage of 45 kV and 40 mA current to determine the 

crystal nature and phase composition of the as-prepared thin films. A total of 20 thin films 

prepared under the same conditions were collected, grounded, and the powder loaded on a no 

background, low volume holder for the XRD measurements. X’Pert HighScore Plus software 

with ICDD/ JCPDS database was used to analyze the XRD data and identify the crystal-phase 

composition in the as-prepared thin films. The average crystallite size for each crystalline phase 

was determined by Scherrer equation. A Micromeritics model ASAP-2020 surface area and pore 

size analyzer was utilized to acquire the N2 adsorption-desorption isotherms at 77 K. The 

nanocomposite samples were outgassed under vacuum at 80 °C for 24 h prior to the 

measurements. The surface areas of the as-prepared nanocomposites were calculated by fitting 

the collected isotherm data using Brunauer, Emmett, and Teller (BET) model. The desorption 

isotherms data were fitted by Barrett, Joyner, and Halenda (BJH) model to calculated the average 

pore diameters, and pore-size distribution. Electrochemical characteristics of the free-standing 

Ppy-SiO2 thin films were investigated by means of cyclic voltammetry and compared to Ppy thin 

films deposited under an anodic potential of +1.0 volts for 400 sec.  

4.3. Results and Discussion  

4.3.1. Synthesis of Conducting Polymer-Silica (Ppy-SiO2-Ag@Au & Ppy-SiO2@Ag) 

Nanocomposite Thin Films  

To date, there is no available strategy to simultaneously synthesize conducting polymer-

silica hybrid nanocomposites via a single deposition potential process. Figure 4.2 is a graphical 

illustration of the nanocomposite and free-standing films fabrication strategy.  The mechanism of  
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Figure 4.2. Schematic Illustration (Not Drawn to Scale) of the Fabrication of Ppy-SiO2 

Mesoporous Nanostructured Composite Films through the Cathodic Co-Deposition of Ppy and 

SiO2 from Pyrrole-Silica Sol and the Application of the LCDC Etching Strategy to Produce Ppy-

SiO2 and Ppy Free-Standing Films.  

the single-step co-electrodeposition of Ppy-SiO2-Ag@Au and Ppy-SiO2@Ag hybrid films is 

complicated. The synthesis strategy is based on the combination of electrodeposition, 

electrochemical reduction, sol-gel chemistry and free-radical polymerization processes in a 

strongly acidic environment. Although each of these processes involve multiple steps, the main 

stage during the formation of hybrid nanocomposite thin films is the in situ electrogeneration of 

two catalysts simultaneously: one for the hydrolyzed sol-gel monomers polycondensation (e.g., 

OH-);34 and the second for pyrrole monomers oxidation and polymerization (e.g., NO+).38-41 The 

reaction conditions were optimized to generate appreciable amounts of both catalysts.  

The multi-step reaction begins with silica sol formation through the acid catalyzed 

hydrolysis of TMOS (silane monomer) for 8 h. The strongly acidic reaction medium (pH ~ 1) 

and prolonged reaction time ensures a nearly complete hydrolysis of the silica monomer. The 

silver precursor (AgNO3, zero or 20 mg) and the pyrrole monomer were added successively to 

the silica sol to produce a transparent two/three-component electrodeposition solution. The 

electrodeposition solution retained its transparency and its color did not change after aging for 30 

min at ambient conditions in a closed vial. This finding indicated that the pyrrole monomers did 
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not undergo any polymerization and reflected the stability of the electrodeposition solution 

within the time frame of the electrodeposition reaction. Furthermore, it confirms that 

electropolymerization of pyrrole monomers is achieved only by the in situ electrogenerated 

oxidation catalyst, NO+. Upon the application of a large enough negative potential (e.g., -1.0 

volts) to the electrode surface, simultaneous redox reactions promptly take place at the 

electrode/electrolyte interface as shown in equations (1-6). First, the electrochemical reduction 

of the nitrate ions (NO3
- from NaNO3 and HNO3) in a strong acidic medium (pH ~ 1) to produce 

nitrous acid (HNO2, pKa = 3.3) which is kinetically unstable under the reaction conditions and 

undergoes a dissociation reaction to produce a strong oxidizing agent and electrophile, the 

nitrosonium ion (NO+, Eo
red = 1.50 volts vs. SCE) as previously demonstrated.38, 41 Second, the 

reduction of oxygen and/or water in the system31-35 yields the sol-gel polycondensation base 

catalyst (OH-). The third reaction is the electrodeposition of silver particles through the 

electrochemical reduction of the silver ions. 

 

NO3
− + 3H+ + 2e− → HNO2 +  H2O                                                                                                    (4.1) 

HNO2 +  H+  →  H2NO2
+ ⟷ NO+ +  H2 O                                                                                         (4.2) 

2H2O + 2e− → 2OH− + H2 (g)                                                                                                           (4.3) 

O2 + 2H2O + 4e− → 4OH−                                                                                                                    (4.4) 

O2 + 2H2O + 2e− →  H2O2 +  2OH−                                                                                                  (4.5) 

Ag+ + e− →  Ag0                                                                                                                      (4.6)  

 

Pyrrole monomers are chemically oxidized at vicinity of the electrode surface by the in 

situ electrogenerated nitrosonium ions (NO+) in a free radical polymerization process and 

eventually Ppy deposits on the electrode surface as shown in equations 7-9, Figure 4.3, and 

Figure 4.2.41, 42  
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The hydrolyzed silica monomers undergo a polycondensation reaction catalyzed by the in 

situ electrogenerated base catalyst (OH-) at the electrode/solution interface.31-36 As a result 

colloidal silica particles are immediately deposited at the electrode surface via a base-catalyzed 

sol-gel process taking place at the electrode/solution interface.31-36 The color of electrodeposited 

Ppy-SiO2 nanocomposite films is deep-navy-blue with a black appearance as displayed in 

Figure 4.1.  

(4.7) 

(4.8) 

(4.9) 
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Figure 4.3. Photographs at different intervals during the co-electrodeposition of the 

nanocomposite film. The electrogenerated nitrosonium NO+ ions started to diffuse beyond the 

electrode surface at t = 60 sec and complete diffusion was achieved at t = 600 sec. The pyrrole 

monomers in the bulk oxidized at t = 800 sec. The progress of reaction indicates that Ppy 

deposited within and around the silica mesopores. 

4.3.2. Surface Morphology  

Figure 4.4 shows the scanning electron micrographs of Ppy-SiO2-Ag@Au and Ppy-

SiO2@Ag nanocomposite films fabricated by cathodic co-deposition of Ppy, SiO2 and Ag at -1.0 

volts for 30 min from an ethanolic solution containing 0.3 M TMOS, 0.22 M NaNO3, 0.31 M 

HNO3, 13.08/0.0 mM AgNO3, and 0.33 M pyrrole. All the presented SEM micrographs were 

collected from the as-prepared thin films without application of a conductive coating such as 

gold or platinum. Typically, an electrodeposited silica film displays severe charging problems 
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during the imaging process due to its non-conductive nature and thus has to be coated with a thin 

conductive film (e.g. Au, C or Pt) before the imaging event.34 In the present work, no significant 

charging effects were observed suggesting that Ppy was homogenously deposited within and 

around the colloidal silica particles. Additional details about the chemical composition of the 

films are provided in later sections. 

 

Figure 4.4. SEM images of the as-prepared Ppy-SiO2-Ag@Au (a-c, sample A) and Ppy-

SiO2 @Ag (d-f, sample B) nanocomposite films electrodeposited at -1.0 volts for 30 min.  

Under low magnification, the SEM images reveal the formation of porous thin films 

(inset of Figure 4.4 (a, d)) that cover the surface completely while at high magnification, the 

microstructure of the co-deposited hybrids is rough, and particulate/colloidal in nature. The 

particulate-like structure is composed of quasi-spherical aggregates that are interconnected to 

each other in such a fashion as to create a multimodal porous structure composed of small 

mesopores and much larger macropores. The surface of the quasi-spherical aggregates 

themselves is rough and characterized by the presence of superficial nanoparticles. The size of 

the co-electrodeposited nanocomposite aggregates ranged from 70-470 and 30-380 nm in 

diameter for Ppy-SiO2-Ag@Au and Ppy-SiO2@Ag, respectively. The observed large diameter (d 

≥ 200 nm) of some aggregates could be attributed to the fact that these aggregates consist of two 
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or more fused spherical or quasi-spherical particles. Overall, the morphology of the two as-

prepared films are very similar. 

To understand the morphology and ultimately the composition of the films in more detail, 

the deposition potential, deposition time, and the concentrations of the most important reagents 

were varied.  For this study, only one reaction parameter was changed at a time while all the 

others were kept constant. The SEM images of the nanocomposite hybrid films prepared at 

different deposition times (0.5, 1, 2 and 4 min) are shown in Figure 4.5 while that deposited at 

longer deposition time (30 min) is displayed in Figure 4.4. It is clearly evident that the 

morphology of the as-prepared hybrid films strongly depends on the deposition time. For a 

deposition time of 0.5 or 1 min, the electrodeposited particles have a near perfect spherical shape 

and start to interconnect; the deposited film is composed of a number of nanocomposite clusters. 

The observation of spherical particles at the early stages of the electrodeposition reaction is in 

agreement with the previous reports which stated that formation of the Ppy nanowire-based films 

started with the cathodic deposition of a thin layer of Ppy nanospheres.38, 41 As the reaction time 

proceeds beyond 1.0 min, the interconnected particles are no longer near perfect spheres and the 

nanocomposite clusters became more and more cross-linked and span the entire surface, 

resulting in the formation of a three-dimensional open network with a multimodal porosity 

(Figure 4.5 (e-h)). At longer deposition times, the degree of the cross-linkage increases and the 

film becomes thicker (Figure 4.4). It is worth pointing out that nanocomposite films formed at 

deposition times ≥ 2.0 min have aerogel-like microstructures.43  
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Figure 4.5. SEM images of Ppy-SiO2-Ag@Au nanocomposite films prepared at different 

deposition times at -1.0 volts. At early stages of the reaction (t ≤60 sec) spherical nanoparticles 

formed. At t ≥ 2 min the 3D open framework forms and the film continues to grow thicker with 

time. 

The microstructure of the co-electrodeposited films also depends on the magnitude of the 

applied potential. Figure 4.4 and Figure 4.6 show SEM micrographs of materials obtained at -

1.0, -0.8 and -0.6 volts. The electrodeposited hybrid films are particulate in nature and have a 

three-dimensional open framework structure that depends on the deposition potential. Upon 

careful examination of the low and high magnification SEM images, it can be noted that the 

pores of the film deposited at -1.0 volts are smaller than those of the film deposited at -0.6 volts. 
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In addition, the size of the nanocomposite aggregates decreases as the potential is made more 

negative. The films deposited at -0.6 and -0.8 volts are also weakly adhered to the conductive 

substrate, consistent with reduced crosslinking, and could be destroyed upon the removal of the 

deposited film from the electrodeposition solution. Careful attention is required in handling such 

films. 

 

Figure 4.6. SEM images of Ppy-SiO2-Ag@Au nanocomposite films prepared at: -0.6 

volts (a & b) and -0.8 volts (c & d) for 30 min. 

 

The individual effects of changes in either the concentration of sol-gel monomer 

(TMOS), pyrrole monomer, nitric acid, or sodium nitrate can be seen in Figure 4.7.  In all cases 

the SEM images depict a porous open framework consisting of interconnected clusters of 

irregular shaped particles.  It was surprising that even in the absence of TMOS, a particulate-like 

Ppy nanostructured film was obtained instead of the expected nanowire-like film as reported 

before by Koh et al. at seemingly comparable conditions, Figure 4.7 (a, b).40 Of the four 

parameters that were varied, the one that gave rise to the largest change in morphology was the 
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concentration of the acid.  Compared with the lower HNO3 concentration, the nanocomposite 

film prepared at higher HNO3 concentration is strongly adhered to the conductive substrate, 

highly cross-linked, rich in the small pores and rougher than the film prepared at lower HNO3 

concertation, Figure 4.7 (e, f).  

 

Figure 4.7. SEM images reflect the effect of different concentration parameters on the 

morphology of Ppy-SiO2-Ag@Au nanocomposite films electrodeposited at -1.0 volts for 30 min.  

4.3.3. Free Standing and Transferable Composite Films by LDCD   

A variety of porous, conductive, and free-standing films can easily be made by using the 

new multistep etching strategy termed localized drop-cast dealloying (LDCD), Figure 4.1. 
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Selective dissolution of silica and/or silver in the as-prepared Ppy-SiO2-Ag@Au and Ppy-

SiO2@Ag nanocomposite thin films with diluted HF and HNO3 acids leads to a series of free-

standing and transferable pure and hybrid Ppy thin films, Table 4.1. The co-electrodeposited 

hybrid films release during the HF acid treatment without cracking or damage, suggesting a 

strata-like structure with the portion of the film deposited closest to the electrode surface is 

silica-rich (see below). The deep-navy-blue color of the acid-etched free-standing films is similar 

to that of the non-etched nanocomposite films, which reflects the uniformity in composition of 

the electrodeposited nanocomposite films.  Figure 4.8 and Figure 4.9 show SEM images of the 

free-standing Ppy-SiO2, Ppy-Ag and Ppy thin films obtained after the dissolution and selective 

chemical etching of silica and/or silver. The materials are more porous and maintained the 

original particulate-like three-dimensional microstructure of the co-electrodeposited 

nanocomposite films.  It also appears that the as-prepared nanocomposite films are rougher than 

the corresponding free-standing films.   

 

Figure 4.8. SEM micrographs of the Ppy-Ag free-standing film obtained by treating 

sample A with HF (a-c) and Ppy free-standing film obtained by treating sample A with HF and 

HNO3, successively (d-f).  
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Figure 4.9. SEM images of Ppy@Ag thin film obtained by treating sample B with HF (a-

c). Ppy free-standing free obtained by treating sample B with HF and HNO3, successively (d-f). 

Ppy-SiO2 free-standing film obtained by treating sample B with HNO3 (g-i). Ppy free-standing 

film obtained by treating sample B with HNO3 and HF, successively (j-l). The non-destruction of 

the film reflects its homogeneity. 

To better evaluate surface roughness and film thickness, surface profilometry was 

undertaken. Figure 4.10 shows the surface profiles across a sharp edge of the as-prepared Ppy-

SiO2-Ag@Au nanocomposite film and the corresponding Ppy-Ag and Ppy free-standing films. 

The surface profile of the as-prepared nanocomposite film is characterized by the presence of 

larger spikes/oscillations, which is indicative of a rougher surface. The decrease in magnitude 

and number of oscillations in the surface profile of the free-standing films compared with those 
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in surface profile of the mother nanocomposite film might be attributed to the presence of 

superficial particles that dissolve during the acid treatment. The SEM measurements 

demonstrated the presence of such superficial particles in the electrodeposited nanocomposite 

films as pointed out earlier. It is interesting and noteworthy to point out that thickness of the co-

deposited nanocomposite film did not change significantly in the corresponding free-standing 

films obtained after silica and silver removal. This finding reflects the homogeneity in 

composition of the electrodeposited nanocomposite films. A non-homogeneous film such as a 

film with large silica or Ppy aggregates or a film formed by the layer-by-layer deposition 

technique in which the silica and Ppy layers are segregated19 will either be destroyed or show a 

significant decrease in thickness upon the acid treatment. 

 

Figure 4.10. Surface profiles of the as-prepared Ppy-SiO2-Ag@Au nanocomposite film 

(sample A), Ppy-Ag free-standing nanocomposite film (sample A + HF) and Ppy free-standing 
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film (sample A + HF + HNO3). The homogeneity of the deposited nanocomposite film is 

evident. 

 To obtain additional quantitative information about the porosity of the 

nanostructured composite films, nitrogen adsorption/desorption measurements were undertaken. 

In these experiments, multiple films were combined to obtain enough powder to perform the 

measurements. Figure 4.11 shows the isotherms, which reveal a type IV curve characteristic of 

mesoporous structures.44, 45  

 

Figure 4.11. Nitrogen adsorption/desorption isotherms of the as-prepared Ppy-SiO2-

Ag@Au (sample A) and the Ppy-SiO2 (obtained by applying the LDCD etching strategy to 

sample A) nanocomposite films and the corresponding BJH-modeled pore size distribution. 

The specific surface areas calculated using the BET model were found to be 45 and 136 m2/g for 

the electrodeposited Ppy-SiO2-Ag and the chemically etched Ppy-SiO2 nanocomposite films, 
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respectively. These values are significantly higher than BET specific surface areas reported for 

anodically electrodeposited Ppy films (4.8 m2/g) and chemically synthesized Ppy (6.0-21.1m2/g) 

which are mainly non-porous.28, 29 The Barrett-Joyner-Halenda (BJH) model was used to 

determine the average pore diameters and pore sizes distribution from the nitrogen desorption 

isotherms.44, 45 Both Ppy-SiO2-Ag and Ppy-SiO2 hybrid films displayed average pore diameters 

of 6.0 nm with a relatively narrow pore sizes distribution centered at 3.7 nm, indicative of the 

mesoporous nature of the nanocomposite films. Additionally, upon removal of the Ag, a new 

peak centered near 2.1 nm appears in the pore size distribution plot of the Ppy-SiO2 hybrid film. 

These pores are attributed to the formation of micro-mesopores upon the silver dissolution and 

consistent with the increase in surface area observed for the Ppy-SiO2 nanocomposite film. 

4.3.4. Chemical Composition   

The success of Ppy and silica co-electrodeposition, efficiency of the LDCD etching 

strategy, elemental composition, spatial distribution and crystallinity of the different phases in 

the nanocomposite films were examined by X-ray diffraction and energy dispersive X-ray 

microanalysis.  Figure 4.12 presents the X-ray diffraction scans of the as-prepared Ppy-SiO2-Ag 

nanocomposite film and the free-standing Ppy-SiO2 and Ppy thin films obtained by applying the 

LDCD etching strategy. The success of the co-electrodeposition process is further confirmed 

through the presence of two different sets of diffraction peaks in the XRD pattern of the Ppy-

SiO2-Ag nanocomposite film. First, silver in the nanocomposite film displayed five sharp 

diffraction peaks that can be assigned to face-centered cubic (FCC) structure of metallic silver 

phase crystallizing in Fm-3m space group (JCPDS, card no. 03-065-2871). These peaks are 

corresponding to (111), (200), (220), (311), and (222) crystalline planes in the FCC silver crystal 

which indicates the deposition of highly crystalline silver phase.  

The average crystallite size of silver in the nanocomposite film was estimated to be 45.4 

nm by applying Scherrer’s formula to the XRD data. Second, the amorphous nature of both silica 

and Ppy in the nanocomposite film is reflected in the observation of a broad peak centered at 2 

= 24.4o Furthermore, the high efficiency of the LDCD etching strategy is clearly pronounced in 

the XRD scans of the free-standing films where the sharp silver peaks disappeared and the broad 

peak components shifted to lower 2-theta angles (2 =21.06o, 25.90o with FWHM of 4.21, 3.44 

Å, respectively in Ppy film), which is consistent with the silver and silica dissolution/removal. 
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The observed Ppy free-standing film peak positions and d-spacings are matched well with the 

reported literature values for Ppy films.46-48  

 

Figure 4.12. X-ray diffraction patterns of the as-prepared Ppy-SiO2-Ag@Au 

nanocomposite film (sample A) and the free-standing Ppy-SiO2 and Ppy films obtained by 

applying the LDCD etching strategy.  

Energy dispersive X-ray (EDX) analysis was conducted to determine the chemical 

composition of the as-prepared nanocomposite and free-standing films, further examine the 

efficiency of the LDCD etching strategy and achieve a better understanding of the reaction 

mechanism and kinetics. The performed SEM-EDX analysis included EDX spectra recorded 

over an area of 100 m2, elemental mapping, cross-sectional EDX line scan profile, cross-
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sectional EDX line scan elemental mapping, cross-sectional selected area EDX and single point-

scan EDX. The EDX spectral data shown in Figure 4.13, confirm the formation of Ppy-SiO2-

Ag@Au and Ppy-SiO2@Ag nanocomposite films where characteristic Ppy (C and N), SiO2 (Si 

and O) and Ag peaks were observed.  The absence of silica and/or silver peaks in the EDX 

spectra of the etched samples further reflects the high efficiency of the LDCD etching technique. 

The higher silica content (more than 3 times) in Ppy-SiO2@Ag compared with that in Ppy-SiO2-

Ag@Au could be attributed to the lower over-potential for the reduction of water/oxygen to OH-, 

which can lead to an increase in the condensation and deposition of silica on silver vs. gold.  

 

Figure 4.13. EDX spectra of the as-prepared Ppy-SiO2-Ag@Au (sample A), Ppy-SiO2 

(sample B, after Ag substrate removal) free-standing film and Ppy free-standing film obtained by 

treating sample A with HNO3 and HF, successively. The success of the co-electrodeposition 

process and the LDCD etching strategy is evident.  
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EDX elemental maps were collected to investigate the spatial distribution of Ppy (C and 

N), and SiO2 (Si and O) in the co-electrodeposited nanostructured composite films and further 

evaluate film homogeneity. The elemental maps of the as-prepared hybrid films shown in 

Figure 4.14 and Figure 4.15, consist of different colors, with each color corresponding to a 

different element. By careful examination of each elemental map and superimposing the EDX 

maps of the different elements, it can be seen that carbon, nitrogen, oxygen and silicon are near 

uniformly distributed over the entire surface of the conductive substrate. The Ag EDX map 

(Figure 4.14) shows some aggregates that are distributed across the film. The fast deposition rate 

of silver with respect to that of Ppy and silica could account for the observation of some silver 

aggregates.  

 

Figure 4.14. EDX elemental mapping images of the as-prepared Ppy-SiO2-Ag@Au 

(sample A). The bottom right SEM image shows the area over which the EDX elemental maps 

were collected. The inset in the bottom right SEM image is an overlay of all the collected 

elemental maps. 
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Figure 4.15. EDX elemental mapping images of the as-prepared Ppy-SiO2@Ag (sample 

B). The inset SEM image in the bottom right displays the area over which the maps collected. 

Analysis of elemental maps of the free-standing films shown in Figure 4.16, 

Figure 4.17, and Figure 4.18, indicates that the isotropic distribution of different elements in the 

co-electrodeposited films did not change/disturb after the acid treatment, which further confirm 

the high efficiency and reliability of the LCDC technique. Examining the nanoparticles on the 

rough surface of the nanocomposite aggregates in the Ppy-SiO2 hybrid films by single point-scan 

EDX indicated that they possess the same composition as that of the mother film, Figure 4.19.  
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Figure 4.16. EDX elemental mapping images of the free-standing Ppy-Ag hybrid film 

obtained by treating sample A with HF. The inset SEM image in the bottom right displays the 

area over which the maps collected. 
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Figure 4.17. EDX elemental mapping images of the free-standing Ppy film obtained by 

treating sample A with HNO3 and HF, successively. The SEM image in the bottom displays the 

area over which the maps collected. 

 



www.manaraa.com

148 
 

 

Figure 4.18. EDX elemental mapping images of the free-standing Ppy-SiO2 film 

obtained by treating sample B with HNO3. The SEM image in the bottom right displays the area 

over which the maps collected. The bottom left image is an overlay of all the elemental maps. 

Note: the color of the Si map in this figure is different from that in the other figures due to the 

fact that the elemental maps for this sample were collected on a different SEM-EDS instrument.  



www.manaraa.com

149 
 

 

Figure 4.19. Single point-scan EDX spectrum of Ppy-SiO2 free-standing film obtained 

by treating sample B (Ppy-SiO2@Ag) with HNO3. 

4.3.5. Electrochemical Measurements 

One of the unique features of these particular electrodeposited materials is the ability to 

obtain a free-standing film that can be captured on any surface.  In this work, we captured a Ppy-

SiO2 free-standing films on a planar gold electrode and a planar ITO electrode. Figure 4.20 

shows the cyclic voltammograms collected in supporting electrolyte (1.0 M Na2SO4) at a Ppy-

SiO2 modified gold electrode. The capacitive current increases with increasing scan rate as 

expected.  When compared to a CV obtained at an unmodified planar gold electrode, the 

capacitive current is 7 times larger, which is attributed in part to the greater surface area of 

nanocomposite film modified electrode.   
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Figure 4.20. Cyclic voltammograms of the Ppy-SiO2 free-standing film loaded on gold 

substrate and bare gold electrode in 1.0 M Na2SO4 at a scan rate of 1000 mV/s (a). CVs of Ppy-

SiO2 free-standing film loaded on gold substrate in 1.0 M Na2SO4 at different scan rates (b). 

Figure 4.21 (a) shows the CV obtained when the Ppy-SiO2 free-standing film was 

captured on ITO and the modified electrode immersed in 10 mM [Fe(CN)6]
3- in 0.2 M KCl (pH ~ 

7).  The monoelectronic redox system [Fe(CN)6]
3- did not display any characteristic redox peaks 

in the collected CV over the nanocomposite film indicative of the rejection of anionic 

ferricyanide anions by the negatively charged film. A similar trend was reported before for 

electrodeposited silica and pyrrole by our group and others.32, 36, 49 In addition, Ppy anodically 
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deposited on ITO also did not show any redox peaks in the obtained [Fe(CN)6]
3- CV as shown in 

Figure 4.21 (b). In comparison, bare ITO displayed two peaks characteristic of the 

monoelectronic redox system [Fe(CN)6]
3-.  Full electrochemical characterization of the Ppy-SiO2 

nanocomposites and their potential applications as potentiometric and amperometric sensors is 

currently undergoing and it will be the subject of another publication.  

 

Figure 4.21. Cyclic voltammograms of the Ppy-SiO2 free-standing film loaded on ITO 

substrate (red solid line, a), anodically deposited Ppy on ITO substrate (red solid line, b) and bare 

ITO electrode (black solid line in a, b) in 10 mM K3Fe(CN)6] in 0.2 M KCl (pH ~ 7) at a scan 

rate of 20 mV/s-1.  
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4.3.6. Strata-Like Mesoporous Structure 

 In order to examine the microstructure of the as-prepared nanocomposite hybrid film in 

more detail, a cross-sectional SEM image was recorded and is shown in Figure 4.22. 

Interestingly, the nanocomposite film has a strata-like microstructure constructed of three regions 

with different particle density, cross-linkage and porosity. The inner region adjacent to the 

electrode surface and the most outer region exposed to solution are significantly less porous, 

denser, and more cross-linked compared to the middle region.  All three regions are composed of 

quasi-spherical particles. The size of the particles in the middle stratum ranged from 68 to 376 

nm while those in the inner and outer strata, measured at the middle stratum boundaries, are 

having an average size of 106 and 85 nm, respectively.  

 

Figure 4.22. Cross-sectional SEM micrograph of the as-prepared Ppy-SiO2-Ag@Au 

nanocomposite film (sample A) at -1.0 volts for 30 min. The nanocomposite film has a strata-like 

structure with the middle stratum being more porous than the inner and outer strata. 

Cross-sectional selected area EDX, cross-sectional EDX line scan profile, cross-sectional 

EDX line scan elemental mapping were recorded to further investigate the chemical composition 
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of each of the three layers and further understand the kinetics of the co-electrodeposition 

reaction. Figure 4.23 and Figure 4.24 display cross-sectional selected area EDX data of the as-

prepared Ppy-SiO2-Ag@Au nanocomposite film. The uniform distribution of color in the cross-

sectional elemental color maps supports the notion that Ppy and silica simultaneously deposit 

during film formation. The observation of three regions of different color intensity in all the 

collected cross-sectional elemental maps supports the formation of the strata-like microstructure. 

First, the color intensity in C and N elemental maps increased gradually during the inner stratum 

formation, being very weak at the early stages of the reaction (close to the substrate) indicative 

of slow kinetics of Ppy deposition. Then the color intensity dropped in the middle highly porous 

section of the growing hybrid film and then increased during the outer portion of the film 

growth. On the other hand, an opposite trend for the color intensity was observed in the Si and O 

elemental maps.  Close to the substrate surface, the color intensity in Si and O maps is high and 

increases to reach its maximum in the inner stratum indicative of relatively fast kinetics of silica 

formation at the beginning of the co-electrodeposition reaction. The strata-like structure is 

obvious in the overlay of the elemental maps and the color intensity increases in the order middle 

stratum (least intense, low Ppy and silica contents), outer stratum (highest Ppy content), and 

inner stratum (most intense, highest silica content) as depicted in Figure 4.23. 

These elemental maps and cross sectional images provide important clues regarding the 

kinetics of the individual processes that lead to the formation of the strata-like Ppy-SiO2 

mesoporous hybrid film:  pyrrole oxidative polymerization vs. silica condensation. At the initial 

stages of the co-electrodeposition reaction, close to the electrode interface, the EDX line scan 

profile of silica is significantly higher than that of Ppy, indicative of an initial prominent fast rate 

of silica deposition and a relatively slower rate of Ppy deposition. A more silica-rich inner 

stratum thus forms at the electrode interface. Due to the non-conductive nature of 

electrodeposited silica on and around the conductive Ppy nanoparticles, it may be first expected 

that film deposition would stop.  But this was not the case.  The porous nature of base-catalyzed 

electrodeposited films ensures there is access to the electrode surface where reduction of 

water/oxygen and NO3
- can still take place to form the two catalysts (OH-, NO+) that diffuse 

away from the electrode surface. For the specific case of electrogenerated NO+, it is also possible 

that a second scenario takes place at and within the mesoporous of the electrodeposited silica 

through the interaction between the electrogenerated HNO2 (eq. 1) and the labile hydrogen 
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protons from the surface hydroxyl groups of silica as shown in equations 10-11.39 The low 

isoelectric point of silica (Pzc = 1.7-3.5) makes the hydrogen protons of its surface hydroxyl 

groups accessible to the amphoteric HNO2.
39, 50  This assumption is supported by the observed 

large uniformity in the composition of the as-prepared nanocomposite film as evidenced by 

vision, EDX mapping and the non-charging nature of the co-deposited film during the SEM 

imaging.  

 

Figure 4.23. Cross-sectional EDX line scan profile and cross-sectional EDX line scan 

elemental mapping of the as-prepared Ppy-SiO2-Ag@Au nanocomposite film (sample A). The 

different Ppy and silica electrodeposition kinetics are evident. 
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During further growth of the nanocomposite film, the rate of Ppy formation increases and 

a more porous stratum obtained. The electrodeposited film becomes darker and darker producing 

polymer-rich nanocomposite films and the color of the entire solution becomes dark-blue within 

10-12 min due to the chemical oxidation of the pyrrole monomers in the bulk solution by the 

diffused NO+ ions. Afterwards, there is a simultaneous increase in silica and Ppy line scan 

profiles during the formation of the denser outer stratum. This increase reflects an enhancement 

in Ppy and silica deposition rates due to the increase in number of the nucleation sites, which can 

be explained based on the continuous deposition of Ppy at and within the mesopores of the pre-

deposited silica and on the uncoated electrode surface according the proposed reaction 

mechanism. During the outer stratum formation, the deposited Ppy provides extra nucleation 

sites for the silica deposition and so the rate of the silica formation increases and the intensity of 

Si and O colors increases as well.  

 

Additional structural and kinetics information can be obtained by closely examining the 

morphology and chemical composition of the hybrid films prepared at different deposition times.  

EDX spectra of films prepared at different deposition times (0.5, 1, 2, 4 and 30 min) were 

collected and the results are shown in Figure 4.24. As can be seen in Figure 4.24 (c), the co-

electrodeposited nanocomposite film at 0.5 min is relatively silica-rich with Si content of 16.1%. 

The increase in the deposition time from 0.5 to 1 min was accompanied by an enhancement in 

the silica content, a decrease in the Ppy content, and a relatively silica-rich film was obtained 

with Si content of 21.6% These results support the assumption that silica deposition is 



www.manaraa.com

156 
 

characterized by fast kinetics at the preliminary stages of the reaction. This high silica content is 

significantly comparable to the highest silica content demonstrated by the cross-sectional 

selected area EDX measurements, which may imply that the life-time for the inner stratum 

formation is approximately 1 min. Thereafter, as the deposition time passed 1 min, the rate of 

silica deposition reduced and silica content in the growing nanocomposite film decreased 

continuously with the progress of the reaction time while the rate of Ppy formation was 

increasing to produce Ppy-rich nanocomposite film.  

 

Figure 4.24. Kinetics of Ppy and silica electrodeposition during the formation of Ppy-

SiO2-Ag@Au nanocomposite film (sample A) as presented by (a and b) the cross-sectional 

selected area EDX data and (c) EDX spectral data (Wt%) collected at different deposition times. 

In case of Ppy-SiO2-Ag nanocomposite, the rate of silver deposition gradually increased 

by time and so the Ag content in the nanocomposite film increased linearly in the early and 

middle stages of the reaction due to the fast deposition kinetics of silver with respect to that of 

silica and Ppy, then it decreased due to the consumption/deposition of most of the Ag+ ions and 

the massive deposition of Ppy at the final stages of the reaction as can been seen in Figure 4.25. 



www.manaraa.com

157 
 

In Ppy-SiO2-Ag@Au nanocomposite thin films, silver nanoparticles, silica and Ppy are 

concurrently deposited on the conductive substrate. The electrodeposited silver particles are 

conductive and so they work as active centers for the deposition of Ppy and/or silica. The 

simultaneously deposited silica and Ppy on and around the silver particles stabilized them and 

suppress the formation of large silver agglomerates. As a result, the electrodeposited 

nanocomposite thin films are characterized by the presence of dispersed silver particles as can be 

seen in Figure 4.14. It is worthwhile, to mention that co-electrodeposition of Ppy-SiO2 

nanocomposite thin films on a gold conductive substrate failed due to the weak adhesion of the 

electrodeposited film where the deposited film flaked off and destroyed upon the removal of the 

electrode from the electrodeposition solution. On the other hand, the success of Ppy-SiO2-

Ag@Au coelectrodeposition could be attributed to the presence of silver particles, which serve 

as anchors to stabilized the deposited film and increase its adhesion to the conductive gold 

substrate. Similar effect was reported by our group during the co-electrodeposition of Au-SiO2 

nanocomposite films on gold conductive substrates.34 The success of Ppy-SiO2@Ag 

coelectrodeposition could be attributed to the rough nature of silver conductive substrate which 

enhances the adhesion of the deposited film a similar effect was observed when Ppy cathodically 

deposited on nodular copper substrate.41 The weak adhesion of the electrodeposited 

nanocomposite thin film and the need for an adhesion enhancer such as silver particles or a rough 

surface could be attributed to the pH of the electrodeposition solution (pH = 1.4). Previous 

reports stated that cathodic deposition of Ppy occurs only at pH below 1.5 which is on the border 

of the current study.38 
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Figure 4.25. Kinetics of Ppy and silver electrodeposition during the formation of Ppy-

SiO2-Ag@Au nanocomposite film (sample A) as presented by EDX spectral data (Wt%) 

collected at different deposition times. 

4.3.7. Proposed Reaction Mechanism 

It is well established that base-catalyzed polycondensation of the hydrolyzed silica 

monomers is the dominant reaction during the cathodic deposition of silica and the resulting 

films are particulate in nature.31, 33-35 The cathodic deposition of polypyrrole, however, can lead 

to either particle-like or wire-like nanostructures depending on experimental conditions such as 

the concentration of reagents and applied potential. Based on previous work, the microstructure 

of the polymeric film formed via cathodic electrodeposition will be determined by the 

reactivity/concentration of the produced pyrrole monomeric radical cations, which depend on the 

concentration ratio, Cratio =  
[NO+]

[pyrrole]
, where [NO+] is the concentration of the in situ 

electrogenerated nitrosonium ions and [pyrrole] is the concentration of the neutral pyrrole 
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monomer.41, 42, 51 Step-growth polymerization is assumed to occur at high Cratio value, where a 

large number of monomeric radical cations is  produced and the highly reactive pyrrole radical 

cation is forced to polymerize with the closest radical cation to minimize its high energy, 

resulting in the formation of particulate-like polymeric structures. On the other side, chain 

growth leads to polymers with a nanowire-like morphologies and are obtained when a relatively 

low number of pyrrole radical cations is produced at low  Cratio value. These less reactive pyrrole 

monomeric radical cations preferentially polymerize with the more reactive and larger polymeric 

species at the electrode interface (e.g. electrodeposited polypyrrole nanospheres) rather than the 

less reactive neighboring monomeric radical cations.41, 42, 51  

  The in situ electrogeneration of the polycondensation base catalyst (OH-) will induce 

immediate deposition of colloidal silica at the electrode. Concomitantly, Ppy nanospheres will 

also be cathodically deposited at the electrode surface and on the silica nanoparticles as NO+ is 

produced in solution. As the pH at the interface increases, the electrogeneration of NO+ ions will 

decrease/suppress as will the [NO+]:[pyrrole] ratio, which subsequently result in the formation of 

low number of the relatively stable pyrrole radical cations. As a result, a chain growth 

mechanism should then dominant the process and nanowires produced. Surprisingly, however, 

particulate-like nanostructures were obtained instead of the expected nanowire-like structures in 

the studied system regardless of the reaction conditions, e.g. high or low Cratio =  
[NO+]

[pyrrole]
 , NO3

- 

concentration, HNO3 concentration, magnitude of the applied cathodic potential (-0.6, -0.8 and -

1.0 volts), pyrrole monomer concentration, reaction time (1, 2, 4 up to 30 min) and absence or 

presence of the silane monomer (TMOS), as can been seen in Figures 4.4-4.9.   This leads us to 

the conclusion that the microstructure of the electrodeposited materials also depends on another 

factor, which has not been discussed before: nature of the reaction medium or what we called the 

“solvent effect”.   

In aqueous acidic environment, the pyrrole monomers slowly dissolve due to their weak 

basic character52. In neutral aqueous media, pyrrole monomers are very slightly soluble52 and so 

they are difficult to undergo an electro-assisted polymerization reaction.  Previous studies on the 

cathodic electrodeposition of polypyrrole have been exclusively undertaken in highly acidic 

aqueous condition, where the Cratio =  
[NO+]

[pyrrole]
  controls the morphology of the electrodeposited 

polymers as described.38, 40, 41  Our work employed a mixed solvent, ethanol:water (2.5:1 vol 
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ratio).  Ethanol not only improves the miscibility of TMOS with water, but will also improve the 

solubility of pyrrole monomers as the electrodeposition and the production of OH- near the 

electrode surface commences. Notwithstanding, the improved/complete solubility of pyrrole 

monomers along with a slightly faster diffusion rate in the less viscous alcohols and alcohol-rich 

environments, with respect to aqueous environments, facilitate the formation of active pyrrole 

radical cations where the in situ electrogenerated nitrosonium ions (NO+) become more 

accessible by a large number of the pyrrole monomers. Under such “solvent effect” conditions, 

the Cratio =  
[NO+]

[pyrrole]
  is no longer governing the morphology of the electrodeposited Ppy or Ppy 

composites and the reaction mechanism proceeds in a step-growth fashion to produce particulate-

like Ppy-based thin films. In other words, the presence of ethanolic-based silica sol in the 

reaction medium and the subsequent silica deposition directed the pyrrole free radical 

polymerization to occur through a step-growth mechanism rather than the expected chain-growth 

mechanism.  

The validity of this hypothesis has been examined and demonstrated by carrying out the 

co-electrodeposition of the Ppy-SiO2 nanocomposite film using a pure aqueous medium while 

keeping all the other deposition parameters constant. In absence of ethanol, a nanocomposite 

film consisting of nanowires was obtained as shown in Figure 4.26. On the contrary, in the 

presence of ethanol and no matter what the reaction conditions were, a particulate-like 

nanocomposite films were obtained as depicted in Figures 4.4-4.9. The present work 

demonstrates for the first time the “solvent effect” on controlling the morphology and directing 

the reaction mechanism of the electrodeposited Ppy-based materials.  
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Figure 4.26. SEM images of Ppy-SiO2-Ag@Au nanowires prepared from the original 

electrodeposition solution but in absence of ethanol at -1.0 volts 30 min. The solvent effect on 

the nanocomposite film morphology is clearly evident. 
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4.4. Conclusions  

Polypyrrole-Silica (Ppy-SiO2) nanocomposite films characterized by a multimodal porous 

structure were prepared using a single-step co-electrodeposition route. The synthesis strategy 

was based on the combination of electrodeposition, sol-gel chemistry and electro-assisted 

polymerization processes in a strongly acidic environment. Upon the application of a sufficiently 

large negative potential (e.g., -1.0 volts) to a gold or silver coated gold electrode, simultaneous 

redox reactions promptly took place at the electrode/electrolyte interface ultimately yielding two 

catalysts, NO+ and OH-. The former oxidized the pyrrole monomers while the latter condensed 

hydrolyzed silica monomers. A new morphology determining factor the “solvent effect” was 

demonstrated, through which the microstructure of the resulting nanocomposite films can be 

fine-tune between particulate-like and nanowire-like. The fast rate of silica deposition 

commencing at the beginning of the electrodeposition reaction, competition between the 

electrogenerated catalysts at the electrode surface, and their subsequent diffusion into the 

reaction bulk are responsible for the formation of a strata-like nanostructured hybrid thin film. 

Moreover, the silica-rich inner stratum allowed for the formation of free-standing Ppy and Ppy-

SiO2 films through the silica dissolution when the film treated with HF acid. The uniform 

distribution of silica and Ppy within the strata-like nanocomposite film and the absence of any 

silica or Ppy large aggregates were confirmed through the elemental mapping measurements 

which reflects the homogenous co-deposition of silica and Ppy during the film growth and  

accounts for the non-destruction/survival of the free-standing film during the acid treatment. The 

present preparation strategy can be extended to produce other conductive polymer–sol–gel 

nanocomposite thin films of various morphologies. These unique structural features of the 

nanocomposite thin films, particularly their meso- and macro-porosity and ability to be 

transferred to different substrates make them potential candidate in a wide range of application 

including electrochemical sensing, energy storage, miniaturized electronics and catalysis. 
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5.1 Introduction 

An invention disclosure and manuscript have been written based on the work included in 

this chapter.1 Porous nanomaterials generally, and nanostructured porous noble metals 

specifically, have fascinated scientists due to their superior chemical and physical properties over 

nanoparticles and bulk counterparts. Nanoporous metals possess an interesting combination of 

properties owing to their metallic nature and the nanoscale features or the so-called “finite-size 

effect”.2, 3 These intriguing properties are of particular interest from the fundamental research and 

technological applications points of view. Among the different types of porous metals, porous 

platinum nanostructures have received a considerable attention due to their chemical stability, 

excellent biocompatibility, high surface-to-volume ratio, excellent electrical and thermal 

conductivities, good mechanical stability, low density, high catalytic activity, feasibility of 

functionalization and large surface area.4, 5  These characteristics have placed them at the forefront 

as potential candidates for a wide range of technological applications including sensing, catalysis, 

filtration and energy related devices (e.g. state-of-the-art electrode materials in fuel cells are 

platinum-based nanomaterials).2, 3, 6-8  

A number of approaches have been developed to fabricate porous platinum nanostructures 

such as lyotropic liquid crystals soft template technique,9 hard templating of mesoporous silica,10 

porous alumina,11 sol-gel assembly of prefabricated metals nanoparticles to produce aerogels,4 

dealloying techniques,12 and electrochemical deposition.13, 14 Although the aforementioned 

fabrication techniques possess merits and have been proven to be suitable routes to prepare a 
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variety of porous platinum nanostructures, they suffer from some drawbacks. For example, 

templating approaches are time consuming, multistep processes that are difficult to implement for 

the large-scale production due to the necessity to adopt many factors in the templating process 

(e.g. concentration, temperature, pH, etc.), the limitation to produce one-dimensional porous 

structures at most (e.g. array of tubes), and the absence of dynamic control over the length scale 

are disadvantageous.15 Dealloying of an electrodeposited Pt-Cu and Pt-Si binary alloys failed to 

produce bicontinuous porous platinum structures and instead gave platinum films composed of 

randomly cracked spheres13 or isolated pores via ligaments of different sizes.12, 16  

The presence of continuous, non-intersecting and oriented plane (e.g. vertical, horizontal, 

etc.) within a volume furnishes continuously interpenetrated sub-volumes. This partition fashion 

called bicontinuous partitioning. A 3D structure composed of a bicontinuously partitioned sub-

volumes each of them is filled with a distinguished and connected phase of matter (e.g. solid, gas, 

or liquid) is called a 3D bicontinuous structure.17 For example, a sponge and nanoporous gold are 

composed of a connected solid phase and connected gas phase across the sample. 

For applications in electrochemical sensing and electrocatalysis, there are many factors that 

need to be considered.5, 7, 18 For example: (a) porous platinum materials need to be in the form of 

an electrode. Porous platinum nanostructures prepared by wet chemical approaches are in most 

situations particle-based materials,19 not attached to any conductive substrates and so they need to 

undergo an additional electrode fabrication process before use20 (b) stability of the electrode. 

Generally, electrodes fabricated from particle-based materials suffer from stability issues for many 
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reasons such as the weak contact between the material particles and the current collector surface, 

partial deterioration of the electrode during the measurement due to the inadequate adhesion 

between the active electrode material and conductive support;21 (c) mass transport and electron 

transfer limitations are a reflectance of the electrode efficiency and reproducibility so a control 

over the pore diameter and electrode microstructure needs to be achieved to avoid mass transport 

and electron transfer problems, ensure access of the electroactive species being detected into the 

inner surface of the electrode and to prevent the fouling of the electrode surface when it is used in 

complex fouling environments.18, 22, 23 

In order to address all of these considerations, there is a continued necessity to discover 

new porous platinum structures, develop existing fabrication strategies and/ or find a new ones. 

An ideal platform that can satisfy these considerations is a three-dimensional bicontinuous 

nanostructured porous platinum (3D-BC-NP-Pt) prepared by dealloying an electrodeposited 

platinum alloy thin film. A strongly adhered platinum based-film to a conductive substrate can be 

obtained in a one-step process by the application of the electrodeposition technique.24 Dealloying 

of the electrodeposited noble metal alloys represents a simple and promising route for the 

fabrication of three-dimensional bicontinuous structures (e.g. nanoporous gold).18, 22 The 3D-BC-

NP-Pt electrodes are expected to overcome the mass transport and electron transfer issues and 

display excellent electrochemical sensing and catalytic performance even in complex fouling 

environments due to the unique sieving-like mechanism of the bicontinuous nanoporous structures 

(e.g. nanoporous gold) and the nano-confinement related features.16, 22, 25, 26 
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Although for the first glance, the fabrication strategy of 3D-BC-NP-Pt thin film electrodes 

by dealloying an electrochemically deposited platinum alloy looks simple, the non-existence of 

such structure reflects the fact that fabrication of 3D-BC-NP-Pt structure is a challenge.  In order 

to address this challenge, we reasoned that electrodeposition of silver-rich platinum binary alloy 

thin films and selective chemical dissolution of silver would allow the fabrication of three-

dimensional bicontinuous nanoporous platinum (3D-BC-NP-Pt) structures. In this work, we report 

the first the fabrication of high surface area three-dimensional bicontinuous nanoporous platinum 

(3D-BC-NP-Pt) thin film electrodes with a nanoporous gold-like microstructure from 

electrochemically deposited Pt─Ag binary alloy thin films. We demonstrated that the 

microstructure of the resulting 3D-BC-NP-Pt thin films can be fine-tuned by tailoring the 

electrodeposition reaction parameters. Moreover, we demonstrated that the new 3D-BC-NP-Pt 

structure possess excellent electrochemical sensing properties in complex biofouling environments 

and remarkable catalytic activity toward the methanol electro-oxidation compared with 

conventional planar platinum electrodes. The present fabrication strategy is facile, reliable, 

reproducible, scalable and conducive to microfabrication. These findings will open the gates for 

the development of high performance and reliable electrodes for energy, catalysis, sensing, and 

miniaturized device (e.g. implantable neural electrodes) applications. The as-prepared 3D-BC-NP-

Pt structures will enrich the field of electrochemical sensing and electrocatalysis research via 

introducing a new bicontinuous porous high surface area electrode that can be fabricated easily 

and reliably.  
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5.2 Experimental section 

5.2.1 Reagents and Materials 

Potassium tetrachloroplatinate (II) K2PtCl4 46-47% Pt, ACROS Organics™, methanol, 

CH3OH 99.9%, Extra Dry, AcroSeal™, ACROS Organics™, bovine fibrinogen (90% clottable, MP 

Biomedicals), nitric acid HNO3 69.3%, potassium chloride KCl, potassium hydroxide KOH, 

potassium phosphate monobasic KH2PO4, and potassium phosphate dibasic K2HPO4, were 

purchased from Fisher Scientific (CAUTION: HNO3 is a highly corrosive acid and must be handled 

with caution using gloves, safety glasses and protective clothing in a fume hood). Potassium 

ferricyanide K3[Fe(CN)6] was purchased from Sigma-Aldrich. Elevate® Platinum 7810 RTU and 

Techni Silver 1025 RTU were obtained from Technic Inc. US. All chemicals were used as received 

without any further purification. The electrochemical measurement were performed using 

ultrapure type-I water (18.2 MΩ.cm at 25 °C) obtained from Millipore Milli-Q water purification 

system. Nitrogen gas was obtained from AirGas Company, Richmond, VA. Gold mirror 

conductive substrates made of a 100 nm-thick gold and 5 nm-thick titanium adhesion layer on 

glass were purchased from EMF Corporation, Ithaca NY. 

5.2.2 Preparation of the Conductive Substrate 

EMF gold mirror slides were cut to produce rectangular planar gold electrodes of 1 cm x 

2.5 cm. The electrodes were sonicated successively in deionized water, soap, deionized water, 

ethanol and deionized water for cleaning and dried with nitrogen gas. The clean and dry gold slides 

were subject to oxygen plasma cleaning (PE2000 RF Plasma Etcher, South Bay Technology) for 
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5 min at 30 W, 140 mtorr and DC bias of -400 V and were left in air accessible clean chamber for 

30 min before use.  

5.2.3 Fabrication of Three-Dimensional Bicontinuous Nanoporous Platinum Thin Films 

Three-dimensional bicontinuous nanoporous platinum (3D-BC-NP-Pt) electrodes with 

different morphologies were fabricated as follow:  

5.2.3.1 Electrodeposition of Pt─Ag Thin Films 

 Pt─Ag  binary alloy thin films were co-electrodeposited on hanged gold working 

electrodes from solutions containing [Ag(CN)2]
─ and [PtCl4]

2─ complex ions of varying molar 

ratios in the presence of Elevate® Platinum 7810 RTU (Tech. Inc.) as a supporting electrolyte and 

extra platinum source. The geometrical area of the working electrodes was defined by a 1 cm x 1 

cm square using CS Hyde UHMW polyethylene tape positioned on the gold mirror electrode 

surface. A three-electrode electrochemical cell housing platinum gauze as the counter electrode, 

and a silver chloride-coated silver reference electrode positioned close to the gold slide working 

electrode was used to carry out the electrodeposition experiments at room temperature from stirred 

solutions. The electrochemical deposition experiments were performed under an amperometric 

mode using a CHI-1000A potentiostat at a constant potential of −1.0 V for a desired period of time 

(10 min) to produce Pt─Ag binary alloy thin films of varying compositions. The electrodeposited 

alloy films were rinsed with copious amounts of deionized water three times and dried at 60 oC for 

30 min then annealed at 300 oC for 6 h at 2 oC/min heating rate. 
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5.2.3.2 Dealloying Pt─Ag Thin Films and Evolution of the Three-Dimensional Bicontinuous 

Nanoporous Platinum Structures 

 Three-dimensional bi-continuous nanoporous platinum structures were obtained by 

chemically dealloying the as-prepared Pt─Ag  binary alloy thin films for 30 min in 1:1 nitric acid 

(CAUTION: HNO3 is a highly corrosive and dangerous acid and must be handled with extreme 

caution using protective equipment such as gloves, safety glasses and protective clothing in a fume 

hood).  The resulting porous electrodes were immersed in deionized water for 15 min, four times 

to remove any trace amounts of nitric acid from the evolved porous platinum networks. Then the 

3D-BC-NP-Pt electrodes were dried under a gentle stream of nitrogen gas. The as-prepared 3D-

BC-NP-Pt electrodes are air stable for more than 4 months. 

In a typical experiment, 3D-BC-NP-Pt thin films with hierarchical porosity and on 

purposely designed micro-cracks were prepared by dealloying a Pt─Ag thin film electrodeposited 

at -1.0 V for 10 min from a bi-component electroplating solution. The electroplating solution was 

prepared by adding 20 mg K2PtCl4 to 9.0 mL of the supporting electrolyte and stirring the mixture 

for 2 min followed by sonication for 10 min and finally the desired amount of [Ag(CN)2]
─ was 

added, 200 L of Techni Silver 1025 RTU, Tech. Inc. (CAUTION: cyanide based salts are highly 

toxic and must not subject to heat, acid or light. Extreme care, use of protective equipment and 

running the electrodeposition experiment in an acid-free closed chamber equipped with an efficient 

ventilation system are a must). This sample has been chosen a model example to investigate the 

characteristics of the 3D-BC-NP-Pt thin films in electrochemical sensing and methanol electro-
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oxidation.  While nanorods-based 3D-BC-NP-Pt thin films were obtained as follow: first a plating 

solution composed of 20 mg K2PtCl4, 9.0 mL of the supporting electrolyte and 75 L of 

[Ag(CN)2]
─ was prepared. The chemical composition of the plating solution was 

modified/adjusted by depositing a Pt─Ag thin film for 2 min. The resulting electrode after 2 min 

was discarded while the modified electroplating solution was used to deposit Pt─Ag thin film on a 

new gold electrode at -1.0 V for 10 min. Upon dealloying 3D-BC-NP-Pt nanorods with circular 

apex and ice-cream-cone like structures were obtained. (NOTE: always the electrodeposited Pt─Ag 

thin films annealed at 300 oC for 6 h before the dealloying process).  

Table 5.1 summarized the experimental details for preparing the different nanoporous 

platinum structures.   

Table 5.1. Experimental details for preparing the nanoporous platinum structures. 

Electroplating 

solution for 

K2PtCl4, 

mg 

Elevate Platinum 

7810 RTU, mL 

Techni Silver 

1025 RTU, L 

Deposition 

Potential, volts 

Deposition 

time, min 

Sample A 20 9.0 75 -1.0 10 

Sample B 20 9.0 100 -1.0 10 

Sample C 20 9.0 200 -1.0 10 

Sample D* 20 9.0 75 -1.0 10 

*: for sample D deposition was carried out for 2 min then the substrate was replaced and 

deposition carried out on a new substrate for 10 min.  
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5.2.4 Characterization of 3D-BC-NP-Pt Electrodes 

The surface morphology of the electrodeposited Pt─Ag binary alloy thin films and the 

resulting 3D-BC-NP-Pt structures after the dealloying process were investigated using a HITACHI 

SU-70 field-emission scanning electron microscope (FE-SEM). The post-dealloying chemical 

composition of the BC-NP-Pt films was examined by energy dispersive X-ray spectrometer (EDX) 

using a HITACHI SU-70 FE-SEM. Thickness of the dealloyed films was measured via collecting 

cross-sectional SEM images. 

 Platinum and silver contents in the electroplating solutions were determined by using 

Varian-Vista MPX, CCD Simultaneous inductively coupled plasma-optical emission spectroscopy 

(ICP-OES).as follow: first, seven aqueous platinum standard solutions were prepared by the 

continuous dilution of the stock platinum standard (Inorganic Ventures 1000 ± 4 g/mL) using 2% 

trace metal grade nitric acid solution. A 1.00 mL of the stock platinum standard (1000 g/mL, 

1000 ppm) was diluted to 10.00 mL to produce the first platinum standard of 100 ppm 

concentration. Then 5.00 mL of the as-prepared platinum standard (100 ppm) was diluted to 10.00 

mL to produce the second platinum standard of 50 ppm concentration. A 5.00 mL of the second 

platinum standard (50 ppm) was used to prepare the third platinum standard of 25 ppm 

concentration. The same dilution method was used to prepare 12.50, 6.25, 3.125 and 1.5625 ppm 

platinum standards.  

Second, 10 mL of the stock silver standard (Inorganic Ventures 100.52+0.72 g/mL) was 

used as the first silver standard solution. The second silver standard solution of 50 ppm 
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concertation was obtained by diluting 5.00 mL of the first standard solution to 10.00 mL using 2% 

trace metal grade nitric acid solution. Then 25, 12.5, 6.25, 3.125 and 1.5625 ppm silver standards 

were prepared by following the same dilution protocol.  

The electroplating solutions correspond to samples A, B, C and D (Table 5.1) were diluted 

200 times before the ICP measurements using 2% trace metal grade nitric acid solution. Typically, 

a 0.50 mL of the electroplating solution was diluted to 100.00 mL.  

The obtained ICP data are summarized in Table 5.2, all numbers should multiplied by 200 

to get the actual concertation.   

Table 5.2. As-obtained ICP data for the nanoporous platinum electroplating solutions. 

No. Electroplating solution for [Platinum], ppm [Silver], ppm 

1 Sample A 9.090 1.379 

2 Sample B 8.909 1.710 

3 Sample C 8.081* 3.625 

4 Sample D 9.133 1.293 

* This number is low because of error in the weighing of the Pt salt. 

5.2.5 Electrochemical Measurements 

The electrochemical performance and characteristics of the as-prepared 3D-BC-NP-Pt thin 

film electrodes relative to the commercially available planar platinum electrodes (CHI102, 2 mm 

diameter and BASi, 1.6 mm diameter) were examined by means of cyclic voltammetry. All 

electrochemical measurements were performed at room temperature in a typical 3-electrode one-
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chamber electrochemical setup using a platinum wire auxiliary electrode and silver-silver chloride 

(1 M KCl internal filling solution) reference electrode. For all the electrochemical measurements 

working 3D-BC-NP-Pt electrodes with an exposing geometrical area of 0.0792 cm2 were used. 

Geometrical area of the working electrodes was defined by utilizing a 1/8 in. circle punched in a 

rectangular piece of CS Hyde UHMW polyethylene tape positioned on the 3D-BC-NP-Pt electrode 

surface just prior to the measurement.  The planar Pt electrodes were cleaned by rinsing the 

electrode surface with a plenty of deionized water and gently wiping it using a Kimwipe. The dry 

electrode was rinsed again with deionized water three times and polished on a polishing cloth pad 

with 0.5 m alumina suspension for 2-3 min. Then, it cleaned with a plenty of deionized water 

three times and polished again on a clean wet cloth pad for 2-3 min. After that, the electrode rinsed 

with deionized water three times and sonicated in deionized water, ethanol and deionized water 

each for 5 min (CAUTION: sonication for long time may damage the electrode via the 

overheating). After sonication the electrode was dried by nitrogen gas. The cleaned and dry 

electrode was plasma cleaned for 5 min at 30 W and kept in a clean chamber overnight before use.  

The electrochemical sensing and biofouling of the working electrodes experiments were 

conducted using a multichannel CHI-1000A electrochemical workstation while the performance 

of the 3D-BC-NP-Pt working electrodes toward the electro-oxidation of  methanol was evaluated 

by cyclic voltammetry on a CHI-401 electrochemical workstation (CH Instruments Inc.) and 

compared to planar platinum electrode. 10 mM K3[Fe(CN)6] in 0.1 M KCl used for the sensing 
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experiments. For the biofouling test 10 mM K3[Fe(CN)6], 10 mM and 2 mM ascorbic acid in PBS 

(0.1M, 0.1 M KCl, 7.4 pH) and 1 mg/mL fibrinogen were used.  

5.3 Results and discussion 

5.3.1 Fabrication of Three-Dimensional Bicontinuous Nanoporous Platinum Thin Films 

Figure 5.1 is a graphical illustration of the template-less fabrication of nanorods and 

nanoporous gold-like 3D-BC-NP-Pt structures with and without hierarchical porosity.  

 

Figure 5.1. Schematic Illustration (Not Drawn to Scale) of the Fabrication of Three-

Dimensional Bicontinuous Nanoporous Platinum (3D-BC-NP-Pt) Structures through Chemical 

Dealloying of the Co-Electrodeposited Pt-Ag Binary Alloy Thin Films. 

The fabrication strategy of the 3D-BC-NP-Pt structures is based on the combination of the 

coordination chemistry, electrochemical reduction and corrosion chemistry. The fabrication 

strategy is composed of two main steps: (a) co-electrodeposition of a single phase silver-rich 

platinum binary alloy Pt─Ag thin film and (b) chemical dealloying of the electrodeposited Pt─Ag 

alloy thin films in nitric acid. The dealloying technique is well known since the 1920s and in which 
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the porous metal structure is obtained by the selective removal of the least noble component from 

an alloy in a corrosive medium.27-29 There is a basic requirement to ensure success of the pores 

formation during the dealloying process, the rate of the dissolution of the more noble component 

in the target alloy should be significantly slower than that of the less noble component.30 The 

challenge in the formation of 3D bicontinuous porous noble metal structures via the dealloying 

technique is attributed to the fact that dealloying of a given system (e.g. Au─Ag) is only possible 

within a narrow compositional range. Outside this range and at high percentage of the more noble 

metal, the complete dissolution of the less noble alloy component is impossible and random pores 

are obtained.31, 32 While at low concentration of the more noble metal, formation of microscopic 

cracks or complete destruction of the resulting porous framework is possible.30 However, the main 

challenge during the fabrication of 3D-BC-NP-Pt structures lay in the electrodeposition of a single 

phase Pt─Ag  binary alloy thin film of a proper composition for many reasons.14 Although both 

platinum and silver are crystallized in face cubic structures similar to gold, the Pt─Ag system has 

limited solid solubility opposite to Au─Ag system which has complete solid solubility across the 

whole composition range.33-35 The large degree of immiscibility in the Pt─Ag  system and the high 

melting points of Pt (~1772 oC) and Ag (~962 oC) hinder the control over the Pt─Ag alloy 

composition which is of a particular importance during the evolution of the 3D bicontinuous 

nanoporous structure via the dealloying process.27, 36 Although Pt─Ag binary alloys is a suitable 

candidate for the formation porous platinum structures, the simultaneous electrodeposition of Pt 

and Ag is problematic. The rate of Ag electrodeposition is much faster than that of platinum and 
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thus a high degree of control over the electrodeposition reaction parameters and plating solution 

composition is required to deposit Pt─Ag alloy of a desired composition.14 Due to the chemical 

nobility of platinum, its simple salts are not very stable and it mainly stabilized through the 

formation of coordination compounds such as the square planer [PtCl4]
2─ complex ion. There is a 

need to shift the reduction potential of platinum precursors to a more negative potential to avoid 

or minify the spontaneous galvanic displacement reaction in the presence of Ag0 and this could be 

achieved by choosing a proper platinum complex.14, 37 Electrodeposition of platinum thin films are 

usually carried out from plating solutions containing chloride-, borate- or phosphate-based 

supporting electrolytes.14 These electrolytes react with Ag+ ions forming white (AgCl or AgBO2) 

or yellow (Ag3PO4) precipitates and this hinders the electrodeposition of Ag and so prevent the 

formation/co-electrodeposition of Pt─Ag binary alloy. Careful experimental examination of the 

Pt─Ag system electrodeposition (e.g. testing different precursors and different supporting 

electrolytes) and understanding the silver coordination chemistry led to the finding that silver 

cyanide complex [Ag(CN)2]
─ with a formation constant of 5.6 x 1018 can be stable38 in such 

environments and both Pt and Ag can simultaneously electrodeposited from a plating solution 

containing [PtCl4]
2─ and [Ag(CN)2]

─ ions. The electrodeposition reaction parameters (e.g. 

deposition time and potential) for the Pt─Ag system were optimized to produce bicontinuous 

nanoporous platinum structures after the selective dissolution of Ag in acidic medium. By 

manipulating the Pt : Ag mole ratio in the electroplating solution bicontinuous nanoporous 

platinum structures with different morphologies were obtained. 
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Figure 5.2 and Figure 5.3 display the SEM micrographs of the as-prepared 3D-BC-NP-Pt 

structures and a representative SEM of an electrodeposited Pt─Ag binary alloy thin film, 

respectively. As can been seen in Figure 5.3 the electrodeposited Pt─Ag binary alloy thin film is 

non-porous. Upon the acid treatment of the Pt─Ag thin film, silver is selectively dissolved and 

platinum atoms diffuse and aggregate at the metal/acid interface to form a 3D-BC-NP-Pt structure 

as shown in Figures 5.2-5.4.  

5.3.2 Morphology and Pt : Ag Mole Ratio 

At low Pt : Ag mole ratio of 9.27 : 2.56, the low magnification SEM images (Figure 5.2 

(a, b)) indicate that the resulting platinum thin film (sample A) is crack-free, porous and particulate 

 

Figure 5.2. SEM micrographs of the post-dealloying porous platinum particulate-like 

structure (a-d, sample A), crack-free 3D-BC-NP-Pt structure with hierarchical porosity (e-h, 

sample B), and hierarchical 3D-BC-NP-Pt structure with nano-cracks (i-h, sample C).  

Electroplating solutions of 9.27:2.56, 9.27:3.17, and 9.27:6.72 Pt:Ag mole ratios were used to 

produce the pre-dealloying films corresponding to samples A, B and C, respectively. 
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Figure 5.3. SEM images of the electrodeposited Pt-Ag thin film (pre-dealloying sample C) from 

a plating solution containing 9.27:6.72 Pt:Ag mole ratio at -1.0 V for 10 min. 

 

in nature. While, the high magnification SEM images (Figure 5.2 (c, d)) reflect the mesoporous 

nature of the film where the particles at the film upper interface are characterized by the presence 

of a large number of interconnected mesopores and the underneath particles are arranged and 

connected with each other in such a fashion to create a mesopores-rich rough blanket with some 

macropores. The formation of 3D bicontinuous porous platinum structure was not very pronounced 

in this film, which may imply that the concentration of silver in the electrodeposited Pt─Ag film 

was not high enough to produce a 3D bicontinuous porous structure upon its dissolution and/ or 
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the platinum content in the deposited film was high to the extent that limited/hindered the 

bicontinuous porous structure formation upon the silver dissolution. 

Upon increasing the concentration of silver in the electroplating solution by a factor of 

1.24, a 3D-BC-NP-Pt structure was obtained when the electrodeposited Pt─Ag film was treated 

with nitric acid, Figure 5.2 (e-h). At low magnification (Figure 5.2 (e)), the platinum film (sample 

B) is porous, crack-free and characterized by the presence of platinum islands/clusters at the film 

interface. Interestingly, closer examination of the microstructure of the resulting film after the 

dealloying process at high SEM magnification (Figure 5.2 (f-h)) indicated the presence of 3D-

BC-NP-Pt structure with hierarchical porosity. The observed platinum islands/clusters are 

themselves porous in nature and embedded within the 3D-BC-NP-Pt structure. The hierarchical 

3D-BC-NP-Pt structure is composed of multimodal pores: (a) large semi-circular pores of average 

size 42.4 ± 13.6 nm, N = 15 (b) medium size bicontinuous pores with an average diameter and 

ligaments size of 13.9 ± 9.9 nm  (N = 22) and 11.8 ± 3.0 nm (N = 13), respectively and (c) small 

pores within the platinum clusters of 5.7 nm diameters. The medium size bicontinuous pores are 

the dominant pore-type and all the pores are within the mesopores size range 2-50 nm which is 

indicative of the mesoporous nature of the resulting 3D bicontinuous porous platinum film. The 

formation of hierarchical porosity 3D-BC-NP-Pt structure is advantageous because the 3D 

bicontinuous small pores will effectively increase the surface area of the electrode while the semi-

circular large pores will facilitate the transport of the analyte species to the smaller 3D-BC pores.23, 

39 This will provide additional sites (active centers) for the electron exchange process and enhance 
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the electrode area. The net result will be an efficient mass transport and electron exchange between 

the redox molecules and the 3D-BC-NP-Pt electrode surface and hence enhancement in the 

sensitivity and electrocatalytic activity of the electrode. Here it is important to point out that no 

surfactants or structure directing agents were added to the electroplating solution and the resulting 

films after the dealloying process were not further treated except by drying with nitrogen gas.  

Hierarchical 3D-BC-NP-Pt thin film (sample C) with multimodal porosity and nano-

cracks was obtain when the concentration of silver in the electroplating solution further increased 

to be 6.72 mmol as can be seen in Figure 5.2 (i-l). Examining the SEM micrographs reveal a 

nearly complete disappearance of the platinum islands/clusters. The effect of increasing the silver 

content on the microstructure of the hierarchical 3D-BC-NP-Pt structure is explicit in the high 

magnification SEM micrographs where cracks with an average width of 81.8 ± 27.6 nm, N = 16 

were observed. The presence of these nano-cracks is advantageous because it enables fast kinetics 

release of an analyte loaded over or within the porous metal framework.40 The average size of the 

semi-circular large pores almost doubled to be 99.2 ± 25.0 nm, N = 17 while the average size and 

thickness of the small pores and ligaments composing the bicontinuous porous structure decreased 

to be 9.6 ± 3.3 nm (N = 12) and 8.9 ± 3.1 nm (N = 14), respectively. Combining the merits of the 

multimodal hierarchical pore morphology and the fast kinetics release of an analyte through the 

nano-cracks makes the obtained 3D-BC-NP-Pt structure a potential platform for the drug delivery 

applications.40 The cracks formation may be assigned to the stress, and volume contraction during 

the construction of the brittle continuous porous metal structure from a relatively thick alloy film 
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placed in a corrosive medium.40 It worthwhile to mention that, in all the obtained 3D-BC-NP-Pt 

structures, the pores and the ligaments are of a comparable size.  

5.3.3 Film Thickness 

 Figure 5.4 and Figure 5.5 display the cross-sectional SEM images of the as-prepared 

nanostructured porous platinum thin films. It is clear that the film thickness increases with the 

increase of the silver concentration in the electroplating solution.  The porous platinum films A, B 

and C displayed an average thickness of 408 ± 104, 294 ± 55 and 294 ± 19 nm, N = 15 respectively.  

 

Figure 5.4. Cross-sectional SEM images of the post-dealloying porous platinum thin films; 

sample A (a) and sample B (b). The images evident the preservation of the porous microstructural 

features throughout the film thickness and demonstrate the increase of the films thickness with the 

increase of silver content in the electroplating solution. 
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Figure 5.5. Cross-sectional SEM images of the hierarchical 3D-BC-NP-Pt structure with 

nano-cracks (sample C). The images evident the preservation of the bicontinuous porous 

microstructural features throughout the film thickness. 

The high magnification cross-sectional SEM images of sample C distinctly demonstrate 

that the microstructural features of the hierarchical 3D-BC-NP-Pt structure observed on the 

dealloyed film surface are maintained throughout the film thickness as shown in Figure 5.5. The 

efficiency of the dealloying strategy as well as the remaining silver content after the dealloying 

process were examined by the EDX measurements. Figure 5.6 shows a representative EDX 

spectra of the electrodeposited Pt─Ag film and the resulting 3D-BC-NP-Pt film after the dealloying  
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Figure 5.6. EDX spectra of the electrodeposited Pt-Ag thin film from a solution containing 

Pt:Ag mole ratio of 9.27:6.72 at -1.0 V for 10 min and the 3D-BC-NP-Pt thin film (sample C) 

obtained by the selective removal of Ag in HNO3. The success of the co-electrodeposition of silver-

rich platinum alloy thin film and the high efficiency of the dealloying process is evident. 
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process. It is evident that the electrodeposited film is composed of silver-rich platinum alloy and 

the silver content in the post-dealloyed film is significantly reduced to be ~ 2-4 atomic%. The 

obtained data reflect the efficiency of the applied dealloying strategy. A similar residual silver 

content has be reported before for nanoporous gold prepared by dealloying silver-rich gold alloys 

in acid medium.25, 40  

5.3.4 Template-Less Fabrication of 3D Bicontinuous Porous Platinum Nanorods 

We postulated that the absence of continuous porosity in the post-dealloying film (sample 

A) can be tackled by tailoring Pt : Ag mole ratio in the electroplating solution. In order to examine 

this postulation, an extra electrodeposition step has been introduced to fine-tune the Pt : Ag mole 

ratio in the electroplating solution in a trail to get a continuous porous platinum structure. The 

composition of the electroplating solution was modified by running the electrodeposited process 

for 2 min at -1.0 V, the conductive substrate was then removed from the electroplating solution 

and discarded. A new conductive substrate was introduced into the modified plating solution and 

electrodeposition was carried out for 10 min at -1.0 V as shown in Figure 5.1. The resulting Pt─Ag 

film underwent the same post treatments applied to samples A, B and C.  

Figure 5.7 displays the SEM micrographs of the electrodeposited Pt─Ag film before and 

post the dealloying process. The electrodeposited Pt─Ag film (Figure 5.7 (a-d)) is particulate in 

nature and the particles composing the film are non-porous. Two types of particles can be identified 

at the film surface, relatively large particles with an average size of 160.1 ± 37.7 nm, N = 9 and 

smaller particles with median particle diameter of 50.6 ± 11.9 nm, N = 9. Careful examination of  



www.manaraa.com

189 

 

 

Figure 5.7. (a-g) SEM images of the electrodeposited Pt-Ag thin film  from the same 

plating solution used for sample A after modifying it through depositing Pt-Ag for 2 min at -1.0 V 

then replacing the conductive substrate and continue the deposition for 10 min at -1.0 V. (e-h) 

SEM images of the resulting 3D-BC-NP-Pt structure (sample D) after the dealloying process. 
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the high resolution SEM image (Figure 5.7 (d)) further confirmed the non-porous nature of the 

deposited particles and reveals that the as-deposited film is porous where the particles composing 

the film are separated from each other’ and within the interstitial spaces that ranged from 19.8 to 

201.3 nm small separate particles with an average size of 50.6 ± 11.9 nm, N = 9 can be identified. 

These findings are interesting and may imply that these particles grew as single entities and what 

the SEM images are showing is simply the top view of growing nanorods. However, further 

investigation is required to support this claim.  

The low magnification SEM micrograph (Figure 5.7 (e)) reveals that the post-dealloyed 

film (sample D) preserved the particulate nature of the pre-dealloyed mother film. On the other 

hand, the high magnification SEM micrographs distinctly demonstrate the evolution of 3D-BC-

NP-Pt structure after the selective silver removal as shown in Figure 5.7 (f-h). The microstructure 

of the post-dealloyed film is similar to that of the pre-dealloyed mother film and is made up of 

relatively large 3D-BC-NP-Pt particles with 192.0 ± 42.6 nm (N = 9), 10.8 ± 1.9 nm (N = 11) and 

14.8 ± 5.0 nm (N = 6) average size, pore diameter and ligaments thickness, respectively.  These 

porous particles are separated from each other by voids ranging from 9.5 to 239.9 nm. The voids 

contain smaller porous particles with an average size of 50.7 ± 4.8 nm, N = 6; these particles are 

separated from each other’ and from the larger ones. It is worthwhile to mention that the particles 

and voids size increased after the dealloying process and thus the post-dealloyed film is more 

porous than the mother Pt─Ag  film where the particles composing the film became more separated 

and less dense after the dealloying process as shown in Figure 5.7 (c, g and d, f).   
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In order to further explore the microstructure of the dealloyed porous platinum film, cross-

sectional SEM images were collected. Interestingly, the post-dealloyed platinum film (sample D) 

is composed of 3D-BC-NP-Pt nanorods as can be seen in Figure 5.8.  

 

Figure 5.8. Cross-sectional SEM micrographs of the 3D-BC-NP-Pt structure (sample D). 

The images demonstrate that the post-dealloyed film is composed of 3D-BC-NP-Pt nanorods with 

circular apex and ice-cream-cone-like structure. 

 



www.manaraa.com

192 

 

Close examination of the cross-sectional SEM micrographs at high magnification demonstrates 

the presence of two different types of nanorods that correspond to the two different particle sizes 

identified in top view SEM images. Short nanorods with circular apex ranged in height from 179.9 

to 463.6 nm and longer nanorods with ice-cream-cone like structure and height scales between 

458.2 and 704.3 nm. The ice-cream-cone like nanostructured porous rods correspond to the large 

porous spherical particles observed in the top view SEM micrographs of the post-dealloyed film. 

These findings clearly indicate the magnificent role of tailoring the Pt : Ag mole ratio in fine-

tuning the morphology of the resulting 3D-BC-NP-Pt films. 

5.3.5 Electrochemical Measurements 

The hierarchical 3D-BC-NP-Pt thin film with multimodal porosity and nano-cracks 

(sample C) was selected as a model to examine the electrochemical characteristics of the 

bicontinuous porous platinum nanostructures. 

5.3.5.1 Surface Area Measurement 

An important character that directly affects the electrochemical sensing and electrocatalytic 

performance of an electrode is its electrochemically active surface area (ECSA), which is a 

reflection/measure of the number of electrochemically active sites on the exposed electrode 

surface. The median ECSA of the as-prepared 3D-BC-NP-Pt electrode was evaluated by means of 

cyclic voltammetry for four 3D-BC-NP-Pt electrodes  in 0.5 M H2SO4 at a scan rate of 50 mV/s 

and compared to that of a planar platinum electrode as shown in Figure 5.9.  
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Figure 5.9. Cyclic voltammetric (CV) curves of the as-prepared 3D-BC-NP-Pt electrode 

(sample C) and planar platinum electrode in 0.5 M H2SO4 at a scan rate of 50 mV/s (a). The 

roughness factor (surface area enhancement) of four different 3D-BC-NP-Pt electrodes prepared 

at different days was found to be 19.81 ± 2.31, N = 4, (b). 
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The total charge associated with the hydrogen adsorption (H+→ Had) peak around -0.27 V (vs 

Ag/AgCl, 1.0 M KCl) during the cathodic sweep was calculated and corrected with respected to 

the double layer capacity, and a conversion factor of  210 µC/m2  was used to calculate the ECSA 

of the exposed electrode surface.41-45 Figure 5.9 obviously demonstrates that the charge associated 

with the hydrogen adsorption on the 3D-BC-NP-Pt electrode is significantly higher than that on 

planer platinum electrode.  The roughness factor (R.F. = ECSA/ geometrical area of the electrode) 

for the 3D-BC-NP-Pt electrode is 19.81 ± 2.31, N = 4. This finding indicates that the surface area 

of the nanoporous platinum electrode is ~ 20 times higher than that of a planer platinum electrode 

which has a R.F. of 1.0. The significant enhancement in the surface area of the 3D-BC-NP-Pt 

electrode was expected due to the presence of a large population of nanopores in the 3D 

bicontinuous framework. 

To further examine the surface area of the as-prepared 3D-BC-NP-Pt thin films, CVs were 

concurrently acquired at a planar platinum electrode and three porous platinum electrodes in 0.1 

M KCl at different scan rates. The measured non-Faradaic capacitive current at 0.25 V in 0.1 M 

KCl is directly proportional to the electrode surface area. As it obvious in Figure 5.10, the non-

Faradaic charging current for the 3D-BC-NP-Pt electrode is significantly higher than that of the 

planar electrode, which is attributed to the higher surface area of the porous platinum electrode. 

As expected, a linear relation was found when the charging current was plotted against scan rate 

as can be seen in the inset of Figure 5.10. The high surface area of the 3D-BC-NP-Pt electrode is 

demonstrated through its high slope value compared to that of the planar electrode. The ratio of 
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the slope of the three 3D-BC-NP-Pt electrodes to the slope of the planar platinum electrode is 

27.98 which means that the surface area of the porous platinum electrode is ~ 28 times higher than 

that of the planar electrode. This data is consistent with the surface area measurements in 0.5 M 

H2SO4, although it looks a slightly higher. 

 

Figure 5.10. Cyclic voltammetric (CV) curves of 3D-BC-NP-Pt (sample C) and planar 

platinum electrodes obtained at 100 mV/s in 0.1 M KCl. The inset displays the relation of the non-

Faradaic charging current at 0.25 V vs the scan rate. The slope the current vs scan rate curve for 

the is much higher than that for the planar platinum electrode which demonstrates the high surface 

area of the electrode,  ~ 28 times higher than that of the planar electrode. 
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The capacitance (C, F), areal (Ca, F/cm2) and volumetric capacitances (Cv, F/cm3) of the 

3D-BC-NP-Pt electrodes were calculated to be 161 F, 2000 F/cm2 and 400 F/cm3 from the cyclic 

voltammograms in 0.1 M KCl according to the equation: 

Cx = 
∫ 𝐼𝑑𝑉

𝑣𝑛
𝑣1

𝑋 𝑣∗ ∆𝑉
 

where x is 1.0, geometric area or volume of the 3D-BC-NP-Pt electrode,  is the scan rate (V/s), 

V is the potential window for the CV measurement and ∫ 𝐼𝑑𝑉
𝑣𝑛

𝑣1
 is the integration of the cyclic 

voltammetry curve.46-49 The high volumetric capacitance of the 3D-BC-NP-Pt electrode gets back 

to its high surface area which make the as-prepared porous platinum structures possible platforms 

for battery-like supercapacitor applications.47  

5.3.5.2 Electrochemical Sensing of a Reversible Diffusing Redox Couple [Fe(CN)6]3- 

 The performance of the as-fabricated 3D-BC-NP-Pt structures as a platform for 

electrochemical sensing applications has been investigated by simultaneously collecting CVs for 

a set of three 3D-BC-NP-Pt electrodes in 10 mM [Fe(CN)6]
3- in 0.1 M KCl as a supporting 

electrolyte and compared to those acquired at a planar platinum electrode. The three porous 

platinum electrodes exhibited the same behavior and representative CVs collected at nanoporous 

and planar platinum electrodes as a function of scan rate are depicted in Figure 5.11 and 

Figure 5.12. The CVs collected contemporarily at planar and nanostructured porous platinum 

electrodes displayed a well-defined redox peaks characteristic of the reversibly diffusing 

monoelectronic redox system [Fe(CN)6]
3-. The ratio of the peak faradaic current at the forward  
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Figure 5.11. Cyclic voltammetric (CV) curves of 10 mM [Fe(CN)6]
3- in 0.1 M KCl 

acquired at 3D-BC-NP-Pt electrode (sample C) at different scan rates. The inset is a plot of the 

peak Faradaic current as a function of the square root of scan rate. The tested electrodes displayed 

the same slope for the current vs the square root of scan rate curve which reveals a typical sensing 

behavior for the 3D-BC-NP-Pt electrode. 

scan to that at the backward scan at the different scan rates was found to be 1.19 ± 0.03 and 1.16 

± 0.03 for 3D-BC-NP-Pt and planar electrodes, respectively which is evident of chemically stable 

redox system at the electrodes surface.22 Furthermore, the formal reduction potential (Eo) of the  
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Figure 5.12. Cyclic voltammetric (CV) curves of 10 mM [Fe(CN)6]
3- in 0.1 M KCl acquired at 

planar Pt electrode at different scan rates. 

 

studied redox couple at the different scan rates and a lab temperature of ~22 oC was calculated to 

be 194.6 ± 1.0 mV for 3D-BC-NP-Pt electrode and 197.4 ± 1.9 mV for planar platinum electrode. 

The small standard deviation (~1 mV) of the calculated Eo at different scan rates is indicative that 

approximately the same Eo value was observed for the studied redox system at the 3D-BC-NP-Pt 

electrode regardless of the magnitude of the applied scan rate. In addition, the tested electrodes 



www.manaraa.com

199 

 

displayed a comparable peak splitting at different scan rates as shown in Tables 5.3 and 5.4. These 

findings are evident of the excellent electrochemical sensing performance of the as-prepared 3D-

BC-NP-Pt electrodes that is comparable to that of commercially available platinum electrodes. 

Table 5.3. Electrochemical characteristics of nanoporous platinum in 10 mM [Fe(CN)6]
3-  

Scan rate, 

mV/s 

Epc, 

V 

Epa, 

V 

Eo, 

mV 
EP, 

mV 

ipc  * 10-5, 

A 

ipa * 10-5, 

A 

ipc/ipa 

100 0.13 0.26 194 114 13.8 11.3 1.22 

75 0.13 0.26 193.5 106 12.1 9.98 1.21 

50 0.15 0.25 196 104 9.96 8.51 1.17 

20 0.15 0.24 194.5 89 6.43 5.61 1.14 

10 0.16 0.23 195 83 4.71 3.93 1.20 

 

Table 5.4. Electrochemical characteristics of planar platinum in 10 mM [Fe(CN)6]
3- 

Scan rate, 

mV/s 

Epc,

V 

Epa 

V 

Eo, 

mV 
EP, 

mV 

ipc  * 10-5, 

A 

ipa * 10-5, 

A 

ipc/ipa 

100 0.14 0.25 197 128 3.785 3.29 1.15 

75 0.15 0.25 199 125 3.31 2.90 1.14 

50 0.15 0.25 199 98 2.75 2.40 1.15 

20 0.15 0.24 197.5 89 1.85 1.59 1.16 

10 0.15 0.24 194.5 76 1.39 1.14 1.22 
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The inset of Figure 5.11 displays the relation between the peak Faradaic current and the 

square root of the scan rate for the data acquired at planar and nanoporous platinum electrodes. 

The morphologically different electrodes displayed a direct relation as was expected and 

interestingly the two plots/lines superimpose each other with the ratio between their slopes being 

a unit.  A similar surface area was obtained for the two electrodes when their slopes were applied 

to the Randles–Sevcik equation. This finding indicates that not all the surface area of the 

nanoporous platinum electrode is used in the electrochemical reaction and only an area 

approximately equal to the geometric area of the electrode was used. This finding agrees with the 

reported literature data by Collinson et al. and others for reversible redox species with fast electron 

transfer kinetics at high surface area electrodes and could be attributed to the prompt consumption 

of the electroactive redox species at outer pore interface which prohibits the use of the underneath 

3D porous network.23, 50-53  

5.3.5.3 Electrochemical Sensing in a Complex Biofouling Environment  

One unique aspect associated with the electrode morphology is the presence of a 

continuous array of nanopores with diameters of ~ 10 nm, similar to that shown for nanoporous 

gold.22, 25, 26, 40  Because of this unique geometric arrangement of nanopores, the surface can act 

like a biosieving membrane and allow for efficient electron transfer between a redox species in 

solution and the electrode surface even in the presence of biofouling proteins. To test this 

hypothesis, the voltammetry of potassium ferricyanide was evaluated at nanoporous (set of 3 

electrodes) and planar platinum electrodes in the absence and presence of bovine fibrinogen as a 
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fouling agent. Figure 5.13 and Figure 5.14 show the CVs of 10 mM [Fe(CN)6]
3- in 0.1 M 

phosphate buffer (pH 7.4, 0.1 M KCl) before and after the addition of fibrinogen at planar and 3D-

BC-NP-Pt electrodes, respectively.   

 

Figure 5.13. Cyclic voltammetric (CV) curves obtained at planar platinum electrode in 10 

mM [Fe(CN)6]
3- in  0.1 M phosphate buffer (pH 7.4, 0.1 M KCl) before (black curve) and after 

(red curve)) addition of bovine fibrinogen (1 mg/mL). Scan rate: 100 mV/s. The electrode was 

incubated for 1 min before collecting the CV. The effect of the fouling agent is pronounced where 

the electrode failed to produce any significant electrochemical response.  
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Figure 5.14. Cyclic voltammetric (CV) curves acquired at 3D-BC-NP-Pt electrode (sample 

C) in  10 mM [Fe(CN)6]
3- in  0.1 M phosphate buffer (pH 7.4, 0.1 M KCl) before (0.0 min) and 

after addition of bovine fibrinogen (1 mg/mL). Scan rate: 100 mV/s.  The electrode was incubated 

for 1 min before collecting the CVs over a 60 min period. CVs of well-defined peaks obtained 

which reflecting the excellent performance of the porous platinum electrode in biofouling 

environments. 

As can be seen, at a planar platinum electrode, the obtained CV is characteristic of an 

electrochemically quasi-reversible redox probe; the peak splitting is 107 mV when the scan rate 

was 100 mV/s.  After addition of fibrinogen, the faradaic peak for the reduction of [Fe(CN)6]
3- 

decreases dramatically indicative that the surface of the electrode has been contaminated, or 
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biofouled by the addition of fibrinogen. In contrast, at nanoporous platinum, no significant change 

in the voltammetric behavior of [Fe(CN)6]
3- was observed after addition of fibrinogen, 

Figure 5.14.  The peak splitting remains at 124.86 ± 1.9 mV and minimal change in the Faradaic 

peak current was observed over ~22 h time period. 

 

Figure 5.15. Peak current data acquired at 3D-BC-NP-Pt (sample C, back line) and planar 

platinum (red line) electrodes from a 10 mM [Fe(CN)6]
3- in  0.1 M phosphate buffer (pH 7.4, 0.1 

M KCl) aqueous solution before (t = 0) and after the addition of fibrinogen (1mg/mL) to the 

solution. Data recorded over a 60 min period at a scan rate of 100 mV/s. The error bars represent 

the standard deviations of the peak current data acquired simultaneously from 3 porous platinum 

electrodes. Planar platinum electrode peak current signal vanished in the biofouling environment 

while that of the porous platinum almost did not change. 
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To better see the change in Faradaic current of [Fe(CN)6]
3- following addition of fibrinogen, 

the current at ~138  mV was measured and plotted vs time and the results are shown in Figure 5.15.  

Again, a significant drop in current took place at the planar Pt electrode due to the adsorption of 

the fibrinogen molecules on the electrode surface and electrode became no longer responsive while 

only a 8.3 % drop was observed at 3D-BC-NP-Pt after immersion for 60 min. Interestingly, the 

peak current ratio of [Fe(CN)6]
3- redox probe at nanoporous platinum electrode maintained the unit 

value over time in the biofouling environment. This proves the fast and efficient electron transfer 

between the nanoporous platinum electrode and the [Fe(CN)6]
3- ions in the solution takes place 

even in the presence of adsorbed fibrinogen.  This results is attributed to the unique microstructure, 

nanoscale features and biosieving-like behavior of the nanoporous electrode. These results are very 

similar to nanoporous gold prepared by dealloying, which has a similar pore arrangement.25 

5.3.5.4 Electro-Oxidation of Methanol 

 The electrocatalytic activity of the as-prepared bicontinuous nanoporous platinum films 

(set of three electrodes) toward methanol oxidation has been evaluated by means of cyclic 

voltammetry under alkaline conditions and compared to a commercial planar platinum electrode. 

All the electrochemical measurements were conducted in a deaerated 1 M KOH aqueous solution 

containing 0.5 M methanol at room temperature and under nitrogen as a protection atmosphere. 

Activation of the tested electrodes has been done by cycling them in 1 M KOH aqueous electrolyte 

within the voltage range -1.0 to 0.6 V (vs Ag/AgCl) for 10 cycles at scan rate of 50 mV s-1. The 

as-prepared nanoporous platinum electrodes displayed an exceptionally high catalytic activity 
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toward the electro-oxidation of methanol compared to that of the planar platinum electrode. 

Representative cyclic voltammograms (CVs) for the electro-oxidation of methanol at a scan rate 

of 50 mVs-1 are depicted in Figure 5.16.  

 

Figure 5.16. Comparison of the cyclic voltammetric (CV) curves for methanol electro-

oxidation obtained at 3D-BC-NP-Pt electrode (sample C, black curve) and planar platinum 

electrode (red curve) from alkaline solution containing 0.5 M CH3OH in 1.0 M KOH. Scan rate: 

50 mVs. The high catalytic activity of 3D-BC-NP-Pt electrode toward methanol electro-oxidation 

is obvious and the rate of methanol electro-oxidation at BC-NP-Pt electrode is 30 times higher 

than that on planar platinum electrode. 
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The tested electrodes displayed two well-defined current peaks characteristic of methanol electro-

oxidation. The symmetric anodic peak observed in the forward scan corresponds to the oxidation 

of freshly adsorbed methanol species. This peak shifted from -294 mV on planar platinum 

electrode to -177.6±3.2 mV on nanoporous platinum electrodes. The significant shift of the peak 

potential to a less negative value may be attributed to the high surface area, nanoscale and nano-

confinement features, large number of active sites and the enhanced mass transport through the 

porous network which facilitate/catalyze the methanol electro-oxidation. During the reverse scan, 

an anodic oxidation current peak around -0.4 V was recorded. This peak can be attributed to 

sweeping the incompletely oxidized carbonaceous organic intermediates formed on the electrode 

surface during the forward potential sweep. The high tolerance of the 3D-BC-NP-Pt catalyst 

toward the accumulation of carbonaceous organic residues on the electrode surface is pronounced 

in its very high if/ ib ratio ~ 19 (if and ib are the forward and reverse anodic peak current densities, 

respectively) which is 4 times larger than that of the planar Pt electrode. The ratio (if)3D-BC-NP-Pt/( 

if)planar-Pt was found to be 30, which demonstrates that the rate of methanol electro-oxidation at 

nanoporous platinum is 30 times higher than that at planar platinum. Another factor that reflects 

the high catalytic activity of the 3D-BC-NP-Pt electrode toward the methanol oxidation is the very 

low catalyst loading that lies in the microgram scale. A rough catalyst loading of ~ 35 micrograms 

can be calculated based on the median film thickness 435 nm, diameter of the cylindrical electrode 

0.32 cm, and assuming that pores and ligaments are having the same size and their ratio is 1:1 so 

density of nanoporous platinum will be half that of bulk Pt. These interesting findings make the 
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as-prepared 3D-BC-NP-Pt catalyst a potential candidate to overcome the sluggish kinetics of 

methanol electro-oxidation and so pave the way to its possible application in high current outputs 

direct methanol fuel cells.  

5.4 Conclusion 

Silver-rich platinum binary alloys thin films have been successfully prepared by the co-

electrodeposition of [Ag(CN)2]
─ and [PtCl4]

2─ complex ions on conductive substrates at ambient 

conditions. Bicontinuous nanoporous platinum thin film electrodes with different morphologies 

and microstructural features similar to that of nanoporous gold were obtained via the selective 

removal of silver in an acid medium. The electrochemically assisted strategy for bicontinuous 

porous platinum fabrication is simple, reproducible, time and cost effective where very low 

platinum concentrations in the mmole range are required. These merits make the developed 

fabrication strategy a promising candidate for the large scale production. By tailoring the 

composition of the electroplating solution hierarchically porous crack-free films and films with 

nano-crack were obtained.  Thin films composed of bicontinuous porous platinum nanorods were 

synthesized by fine-tuning the composition of the electroplating solution in a two-step 

electrodeposition process. The prepared porous electrodes possess significantly high and tunable 

surface area with respect to that of planar electrodes. The nanoporous platinum thin film electrodes 

displayed a typical electrochemical behavior in aqueous medium contains electrochemical 

reversible redox species and retained its outstanding sensing behavior in complex biofouling 

environments, in which planar electrodes become irresponsive. High volumetric capacitance and 



www.manaraa.com

208 

 

enhanced catalytic activity toward methanol electro-oxidation were demonstrated for the as-

prepared porous platinum electrodes. These interesting findings coupled with the unique structural 

features of the nanoporous platinum thin films and easy of fabrication, make them potential 

platforms for many technological applications including high power outputs fuel cells, battery-like 

supercapacitors, energy storage, drug delivery vehicles, electrochemical sensing, catalysis, and 

electrocatalysis and miniaturized devices. 
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6. Chapter 6: Conclusions and Future Work 
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6.1 Conclusion 

Novel, facile, reliable, scalable and reproducible strategies for the fabrication of 

multifunctional nanostructured porous materials have been demonstrated based on the deep 

understanding and correlation of inorganic-chemistry, organic-chemistry and electrochemistry. All 

the developed strategies were written as articles and an invention disclosure; published or 

submitted.      

First, porous Au-SiO2 nanocomposites of various compositions have been prepared by a 

novel one-step co-electrodeposition route of KAuCl4 and TMOS on a conducting substrate and 

from which high surface area nanostructured porous gold electrodes have been successfully 

prepared.  Application of a sufficient negative potential resulted in the simultaneous reduction of 

gold ions and the formation of hydroxide ions, which subsequently catalyzes the condensation of 

the pre-hydrolyzed TMOS derived monomers. The as-prepared Au-SiO2 films are colloidal in 

nature and possess an interconnected three-dimensional porous framework with different silica – 

gold ratios depending on the composition of the deposition solutions and the electrodeposition 

reaction parameters (e.g. time and magnitude of the applied cathodic potential). Chemical etching 

of the nanocomposite films using hydrofluoric acid resulted in the formation of nanostructured 

porous gold films with coral-like structures and pores in the nanometer range. The cross-linkage 

of the gold coral branches resulted in the generation of a porous framework, which consequently 

led to the formation of high surface area porous gold electrodes. The thickness of the as-prepared 

Au-SiO2 nanocomposite films was relatively high and varied from 8 to 15 m by changing the 
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applied deposition potential while the thickness of the coral-like nanostructured porous gold films 

ranged from 0.22 to 2.25 m. The as-prepared porous gold films are stable and displayed an 

enhancement in the electrode’s surface area up to 57 times relative to the geometric area. Thus 

they are potential candidates for applications that require high surface area conductive supports, 

particularly in catalysis and chemical sensing.  The developed electrochemical route for the 

formation of porous gold electrodes possess several advantages that include good reproducibility, 

low cost via the use of very dilute gold ion solutions, utilization of environmentally friendly 

solvents (H2O and C2H5OH), and does not require expensive equipment, vacuum, or toxic gold 

cyanide electrolytes.  As a result, the electrochemical gold/sol-gel composite strategy for 

fabricating nanoporous gold is a promising candidate for a large scale production.  

Second, using a single-potential-step co-electrodeposition route, polypyrrole-silica (Ppy-

SiO2) nanocomposite films characterized by a multimodal porous structure composed of meso- 

and macropores were cathodically deposited from ethanolic solutions on oxidizable and non-

oxidizable substrates. The developed fabrication strategy depends on the combination of 

electrodeposition, sol-gel chemistry and electro-assisted polymerization processes in a strongly 

acidic medium. The materials produced have an interesting and unique strata-like pore structure 

along their depth. With the exception of a silica-rich inner region, the nanocomposite films are 

homogeneous in composition. Because the region closest to the electrode surface is silica-rich, the 

fabrication of Ppy-SiO2 and Ppy free-standing films become possible using a newly developed 

multistep etching strategy. Such films can be captured on a variety of different supports depending 
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on the application and they maintain their conductivity when interfaced to an electrode surface. 

These mesoporous composite films form through a unique mechanism that involves the 

simultaneous production of two catalysts, OH- and NO+.  Through the process of understanding 

the reaction mechanism, we highlighted the effect of two simultaneous competing redox reactions 

occurring at the electrode interface on the morphology of the electrodeposited Ppy nanocomposite 

films and discovered a new parameter named the “solvent effect” that can influence the Ppy 

electropolymerization reaction mechanism and hence control the morphology of the final material. 

In an ethanolic solvent system, the pyrrole monomers undergo a step-growth polymerization and 

particulate-like nanostructured films were obtained even upon variation in the monomer or acid 

concentrations. In an aqueous based system, nanowire-like structures were produced consistent 

with a chain-growth mechanism. Such materials are promising candidates for a wide range of 

applications including electrochemical sensing, energy storage, and catalysis. The developed 

fabrication strategy can be extended to produce a variety of conductive polymer–sol–gel 

nanocomposite thin films of various morphologies and compositions. 

Third, the last, most interesting and challenging project in my dissertation involved the 

fabrication of 3D bicontinuous porous platinum thin film electrodes with a nanoporous gold-like 

microstructure. Silver-rich platinum binary alloys thin films have been successfully prepared by 

the co-electrodeposition of [Ag(CN)2]
─ and [PtCl4]

2─ complex ions on conductive substrates at 

ambient conditions. Bicontinuous nanoporous platinum thin film electrodes with different 

morphologies and microstructural features similar to that of nanoporous gold were obtained via 
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the selective removal of silver in an acid medium. The present fabrication strategy is facile, 

reliable, reproducible, scalable and conducive to microfabrication and thus it is a suitable for large 

scale production. The morphology and the porosity of the 3D-BC-NP-Pt thin films can be fine-

tuned by tailoring the electrodeposition reaction parameters. Template-less fabrication of nanorods 

and nanoporous gold-like 3D-BC-NP-Pt thin films with and without hierarchical porosity were 

demonstrated. The as-prepared 3D-BC-NP-Pt structures displayed high surface area and typical 

electrochemical sensing properties comparable to that of commercially available planar platinum 

electrodes for a reversible diffusing redox couple in an aqueous medium. Exceptional 

electrochemical sensing capability for the 3D-BC-NP-Pt electrodes in a complex biofouling 

environment containing fibrinogen as a biofouling agent was evidenced while the commercial 

planar platinum electrodes failed to produce any reasonable signal. The 3D-BC-NP-Pt electrodes 

displayed remarkably high catalytic activity toward the methanol electro-oxidation that is 30 times 

higher that of planar platinum electrodes and high volumetric capacitance of 400 F/cm3. These 

findings will pave the way toward the development of high performance and reliable electrodes 

for catalysis, sensing, high power outputs fuel cells, battery-like supercapacitors and miniaturized 

device applications. 

6.2 Future Work  

My future work will involve the generalization of the developed methods to prepare new 

porous structures, especially the metallic ones. Investigating the possible technological 
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applications of the newly developed porous structures in electrochemical sensing, electrocatalysis 

(e.g. alcohol fuel cells and ORR) and energy storage. 

6.2.1 Electroassisted Fabrication of Metal/Sol-Gel Nanocomposites 

The electrochemically assisted metal/sol-gel nanocomposite fabrication route can be 

extended to prepare a large number of silica-metal nanocomposites and upon silica dissolution, the 

formation of new porous metal structure is possible. Other metal oxides (e.g. SnO2) and their 

corresponding metal nanocomposites can be prepared. For example, SnO2-Ni and SnO2-NxiOy for 

lithium ion battery applications.  

Also, the combination of the metal/sol-gel route and the hard templating approach can be 

applied to fabricate hierarchical nanoporous metal structures. For example, electrodeposition of 

metal-metal oxide nanocomposite films within the voids of silica or polystyrene colloidal crystals.  

6.2.1.1 Fabrication of Hierarchical Nanoporous Metal Structures Using Colloidal Silica 

First, silica nanoparticles (500-1000 nm) will be prepared by Stöber method in which the 

ammonia will catalyze the hydrolysis and polycondensation of a silicon alkoxide precursor in 

H2O/C2H5OH system.1 Then the surface of the silica particle will undergo modification using 

amino silane.2, 3 Second, a solid template will be formed through evaporation induced self-

assembly technique,4, 5 where a cleaned gold slide will be immersed in alcoholic or aqueous 

solution of cysteamine overnight to induce the formation of a self-assembled monolayer. Then the 

functionalized gold substrate will be transferred into a glass vial containing an alcoholic solution 

of the silica nanoparticles at 50 oC for 12 h to form a colloidal crystal of the silica spheres.4, 5 The 
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M-SiO2 nanocomposite will deposit by the electrochemically induced metal/sol-gel route. 

Chemically etching of silica in HF will result in the formation of hierarchical structures.  

6.2.1.2 Fabrication of Hierarchical Nanoporous Metal Structures Using Polystyrene 

  Polystyrene spheres of different diameters are commercially available plus the synthesis of 

polystyrene spheres is a straightforward.6 Hexagonal close packed template of polystyrene spheres 

(500-2000 nm) can be prepared by following the same procedures in 5.2.1.1 and substituting the 

colloidal silica spheres with the polystyrene spheres.4 By electrodeposition of a metal/sol-gel 

derived nanocomposite followed by the dissolution of the polystyrene template using a suitable 

solvent (e.g. chloroform, chloroform/acetone, THF or toluene) a hierarchical structure will be 

evolved. The structure of the prepared nanocomposites and the efficiency of the template removal 

will be examined using SEM and EDX. The electrochemically active surface area of the proposed 

electrodes will be measured by means of cyclic voltammetry and a comparison to the geometric 

area and to the area of planar electrodes will be made in order to examine the success of the 

proposed methodologies.  

6.2.1.3 Fabrication of Hierarchical Nanoporous Metal Structures Using Perpendicular Silica 

  A thin film of vertically oriented silica mesochannels on a conductive substrate can be 

prepared easily by using a modified Stöber solution (H2O, C2H5OH, NH4OH and TEOS + CTAB).7 

The coelectrodeposition of M-SiO2 nanocomposites or M-precious metal alloys through the 

perpendicular silica mesochannels followed by SiO2 or the less noble metal etching will resulted 

in the formation of hierarchical structures.  



www.manaraa.com

220 

 

 

 

 

 

 

 

6.2.2 Electroassisted Fabrication of Polymer-Metal/Metal Oxide Nanocomposites 

Based on the desired application a variety of conducting polymer-metal/metal oxide 

nanocomposites can be easily prepared. Thermal treatment of the as-prepared nanocomposites at 

high temperatures (e.g. 800 oC)  will produced porous carbon-metal/metal oxides nanocomposites 

for potential applications in fuel cells, ORR and energy storage (e.g. batteries and supercapacitors). 

For example, electrodeposition of polypyrrole-metal/metal oxides nanocomposites nanowires is 

expected to produce a high energy outputs capacitors and batteries. For catalysis applications, 

metal catalyst nanoparticles can be cathodically deposited simultaneously on and within the 

growing polymer framework. This will enable an efficient distribution of the catalyst nanoparticles 

within the porous polymer network and thus enhanced catalytic performance. 

6.2.3 Bicontinuous Porous Platinum 

  This will be my first future project. There is a lot of knowledge and information that can 

be gained by studying this system. For example, the different parameters affecting the 

electrodeposition reaction needs to be studied. The formation of new morphologies are expected. 

 

Figure 6.1. Graphical representation of a perpendicular silica structure 
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Extensive study of the applications of the newly developed porous platinum in electrochemical 

sensing, drug delivery, electrocatalysis and energy storage could help in the development of new 

sensors, efficient catalysts and portable electronics. A large variety of hierarchical nanoporous 

platinum structures can be also obtained by combining the developed strategy for fabricating 

porous platinum with the hard templating approach. For example, electrodeposition of Pt-Ag 

binary alloy films within the voids of silica or polystyrene colloidal crystals.  

Due to the biosieving nature and excellent biocompatibility of the as-prepared porous 

platinum, it is expected that it will overweight the best known sensor so far in biofouling 

environments, bicontinuous nanoporous gold. For example, many blood storing facilities are 

stabilizing blood through the addition of citrate that inhibits the blood clotting mechanism. It is 

not ideal to examine such blood samples using nanoporous gold electrode due to adsorption of the 

citrate ions on the gold electrode surface. Porous platinum electrodes are expected to behave much 

better than gold in such complex environments.  

Platinum is a powerful catalyst that can be used in many applications.  The as-prepared 

porous platinum electrodes can be used in producing high current/energy outputs fuel cells. This 

is quite important for military and space applications. The high catalytic activity of platinum can 

also be used to develop new energy-saving sensors. For example, due to the high surface, nano-

confinement and catalytic features of porous platinum it is expected that it will reduce the potential 

required for many electrochemical reaction, for example ascorbic acid oxidation. Such proposed 

sensors could be important in military and space applications when energy supplies are limited.  
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Due to the high volumetric capacitance of the prepared porous platinum it can be used in 

the production of batter-like supercapacitors especially after simple modifications such as 

depositing a thin layer of polymer or graphene on its surface. These capacitors are expected to beat 

the current market batteries because they can be charged in seconds. 
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